durations = dict( long=dict( max_hosts=1, ppn=16, cpp=1, gpu_set="0,1,2,3", wall_time="36hours", project="rpp-bengioy", cleanup_time="10mins", slack_time="10mins", n_repeats=6, step_time_limit="36hours"), build=dict( max_hosts=1, ppn=1, cpp=2, gpu_set="0", wall_time="20mins", project="rpp-bengioy", cleanup_time="2mins", slack_time="2mins", n_repeats=1, step_time_limit="2hours", config=dict(do_train=False), n_param_settings=1,), short=dict( max_hosts=1, ppn=3, cpp=2, gpu_set="0", wall_time="30mins", project="rpp-bengioy", cleanup_time="1mins", slack_time="1mins", n_repeats=1, config=dict(max_steps=100)), ) config = dict( curriculum=[dict()], n_train=64000, run_all_time_steps=True, render_hook=air.AIR_ComparisonRenderHook(), ) envs.run_experiment( "{}_run".format(alg), config, readme, distributions=distributions, alg=alg, task="arithmetic", durations=durations, )
from dps import cfg from dps.utils import Config from auto_yolo.envs import run_experiment if __name__ == "__main__": _config = Config() with _config: cfg.update_from_command_line() run_experiment("local_run", _config, "")
from auto_yolo import envs from auto_yolo.models import yolo_air import argparse readme = "Plotting yolo_air on atari." distributions = None durations = dict() parser = argparse.ArgumentParser() parser.add_argument("--game") args, _ = parser.parse_known_args() config = dict( render_hook=yolo_air.YoloAir_AtariRenderHook(N=32, pred_colour="xkcd:azure"), render_step=1, do_train=False, n_train=16, load_path="/media/data/dps_data/logs/atari_env=task=atari/exp_alg=yolo-air_seed=1742161367_2018_09_04_16_03_06/weights/best_of_stage_0", kernel_size=2, game=args.game, postprocessing="", ) envs.run_experiment( "plot_yolo_air_atari_game={}".format(args.game), config, readme, alg="yolo_air", task="atari", durations=durations, distributions=distributions, )
build=dict(max_hosts=1, ppn=1, cpp=2, gpu_set="0", wall_time="2hours", project="rpp-bengioy", cleanup_time="2mins", slack_time="2mins", n_repeats=1, step_time_limit="2hours", config=dict(do_train=False)), short=dict(max_hosts=1, ppn=2, cpp=2, gpu_set="0", wall_time="20mins", project="rpp-bengioy", cleanup_time="1mins", slack_time="1mins", n_repeats=1, n_param_settings=4), ) envs.run_experiment("test_math", dict(n_train=16000), readme, alg="ground_truth_math", task="arithmetic", durations=durations, distributions=distributions)
host_pool=[":"], kind="parallel"), ) n_digits = args.n_digits config = dict( curriculum=[dict()], n_train=64000, min_digits=n_digits, max_digits=n_digits, max_time_steps=n_digits, run_all_time_steps=True, patience=10000, train_example_range=(0.0, 0.7), val_example_range=(0.7, 0.8), test_example_range=(0.8, 0.9), ) alg = "dair" if args.dair else "air" envs.run_experiment( "{}_search_n_digits={}".format(alg, n_digits), config, readme, distributions=distributions, alg=alg, task="arithmetic", durations=durations, )
dict(n_digits=8, cc_threshold=0.584), dict(n_digits=9, cc_threshold=0.705), dict(n_digits=10, cc_threshold=0.735), dict(n_digits=11, cc_threshold=0.735), dict(n_digits=12, cc_threshold=0.825), dict(n_digits=13, cc_threshold=0.856), dict(n_digits=14, cc_threshold=0.886), dict(n_digits=15, cc_threshold=0.886), dict(n_digits=16, cc_threshold=0.916), dict(n_digits=17, cc_threshold=0.976), dict(n_digits=18, cc_threshold=1.006), dict(n_digits=19, cc_threshold=0.976), dict(n_digits=20, cc_threshold=1.006), ] else: raise Exception() for d in distributions: n_digits = d['n_digits'] d.update(min_chars=n_digits, max_chars=n_digits) envs.run_experiment( "transfer_baseline_sc={}".format(args.sc), config, readme, distributions=distributions, alg="baseline", task="scatter", durations=durations, )
from auto_yolo import envs readme = "Testing ground_truth." distributions = None durations = dict( long=dict( max_hosts=1, ppn=6, cpp=2, gpu_set="0,1", wall_time="24hours", project="rpp-bengioy", cleanup_time="20mins", slack_time="5mins", n_repeats=6, step_time_limit="24hours"), build=dict( max_hosts=1, ppn=1, cpp=2, gpu_set="0", wall_time="2hours", project="rpp-bengioy", cleanup_time="2mins", slack_time="2mins", n_repeats=1, step_time_limit="2hours", config=dict(do_train=False)), short=dict( max_hosts=1, ppn=2, cpp=2, gpu_set="0", wall_time="20mins", project="rpp-bengioy", cleanup_time="1mins", slack_time="1mins", n_repeats=1, n_param_settings=4), ) envs.run_experiment( "test", dict(n_train=16000, do_train=True, render_step=5000), readme, alg="ground_truth", task="arithmetic", durations=durations, distributions=distributions )
envs.run_experiment("simple_xo_continue", config, readme, alg="simple_xo_continue", task="xo", name_variables="decoder_kind", distributions=distributions, durations=dict(long=dict(max_hosts=1, ppn=6, cpp=2, gpu_set="0,1", wall_time="12hours", project="rpp-bengioy", cleanup_time="10mins", slack_time="5mins", n_repeats=6, step_time_limit="12hours"), med=dict(max_hosts=1, ppn=3, cpp=2, gpu_set="0", wall_time="30mins", project="rpp-bengioy", cleanup_time="2mins", slack_time="2mins", n_repeats=3), short=dict(max_hosts=1, ppn=3, cpp=2, gpu_set="0", wall_time="10mins", project="rpp-bengioy", cleanup_time="2mins", slack_time="2mins", n_repeats=3)))
from auto_yolo import envs readme = "Testing simple variational autoencoder." distributions = None durations = dict( long=dict( max_hosts=1, ppn=6, cpp=2, gpu_set="0,1", wall_time="24hours", project="rpp-bengioy", cleanup_time="20mins", slack_time="5mins", n_repeats=6, step_time_limit="24hours"), build=dict( max_hosts=1, ppn=1, cpp=2, gpu_set="0", wall_time="2hours", project="rpp-bengioy", cleanup_time="2mins", slack_time="2mins", n_repeats=1, step_time_limit="2hours", config=dict(do_train=False)), short=dict( max_hosts=1, ppn=2, cpp=2, gpu_set="0", wall_time="20mins", project="rpp-bengioy", cleanup_time="1mins", slack_time="1mins", n_repeats=1, n_param_settings=4), ) envs.run_experiment( "test", dict(n_train=16000), readme, alg="simple", task="arithmetic", durations=durations, distributions=distributions )
dict(n_digits=5, cc_threshold=0.02), dict(n_digits=7, cc_threshold=0.6), dict(n_digits=9, cc_threshold=0.52), ] for d in distributions: n_digits = d['n_digits'] d.update( min_digits=n_digits, max_digits=n_digits ) durations = dict( oak=dict( max_hosts=1, ppn=1, cpp=2, gpu_set="0", wall_time="30mins", cleanup_time="1mins", slack_time="1mins", n_repeats=1, kind="parallel", host_pool=":"), ) config = dict( curriculum=[dict()], n_train=32, n_val=1000, stopping_criteria="AP,max", threshold=0.99, min_digits=1, max_digits=1, do_train=False, render_hook=yolo_air.YoloAir_ComparisonRenderHook(show_zero_boxes=False), ) envs.run_experiment( "comparison_baseline", config, readme, distributions=distributions, alg="baseline", task="arithmetic", durations=durations, )
build_object_decoder=build_net) if args.sc == "AP": config.update(stopping_criteria="AP,max", threshold=1.0) elif args.sc == "count_error": config.update(stopping_criteria="count_error,min", threshold=0.0) elif args.sc == "count_1norm": config.update(stopping_criteria="count_1norm,min", threshold=0.0) else: raise Exception() if args.transfer: config["min_chars"] = args.n_digits config["max_chars"] = args.n_digits config["n_train"] = 25000 task = "scatter" else: config["min_digits"] = args.n_digits config["max_digits"] = args.n_digits config["n_train"] = 64000 task = "arithmetic" envs.run_experiment("baseline_search_sc={}_n_digits={}".format( args.sc, args.n_digits), config, readme, distributions=distributions, alg="baseline", durations=durations, task=task)