コード例 #1
0
    def test__interferometer(self):

        visibilities_mask = np.full(fill_value=False, shape=(7, ))

        real_space_mask = aa.Mask2D.unmasked(shape_native=(7, 7),
                                             pixel_scales=0.1,
                                             sub_size=1)

        grid = aa.Grid2D.from_mask(mask=real_space_mask)

        pix = aa.pix.VoronoiMagnification(shape=(7, 7))

        sparse_grid = pix.sparse_grid_from_grid(grid=grid)

        mapper = pix.mapper_from_grid_and_sparse_grid(
            grid=grid,
            sparse_grid=sparse_grid,
            settings=aa.SettingsPixelization(use_border=False),
        )

        reg = aa.reg.Constant(coefficient=0.0)

        visibilities = aa.Visibilities.manual_slim(visibilities=[
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
        ])
        noise_map = aa.VisibilitiesNoiseMap.ones(shape_slim=(7, ))
        uv_wavelengths = np.ones(shape=(7, 2))

        interferometer = aa.Interferometer(
            visibilities=visibilities,
            noise_map=noise_map,
            uv_wavelengths=uv_wavelengths,
            real_space_mask=real_space_mask,
        )

        inversion = aa.Inversion(
            dataset=interferometer,
            mapper=mapper,
            regularization=reg,
            settings=aa.SettingsInversion(check_solution=False),
        )

        assert inversion.mapped_reconstructed_visibilities == pytest.approx(
            1.0 + 0.0j * np.ones(shape=(7, )), 1.0e-4)
        assert (np.imag(inversion.mapped_reconstructed_visibilities) <
                0.0001).all()
        assert (np.imag(inversion.mapped_reconstructed_visibilities) >
                0.0).all()
コード例 #2
0
    def test__interferometer_linear_operator(self):

        real_space_mask = aa.Mask2D.unmasked(shape_native=(7, 7),
                                             pixel_scales=0.1,
                                             sub_size=1)

        grid = aa.Grid2D.from_mask(mask=real_space_mask)

        pix = aa.pix.Rectangular(shape=(7, 7))

        mapper = pix.mapper_from_grid_and_sparse_grid(
            grid=grid,
            sparse_grid=None,
            settings=aa.SettingsPixelization(use_border=False),
        )

        reg = aa.reg.Constant(coefficient=0.0)

        visibilities = aa.Visibilities.manual_slim(visibilities=[
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
            1.0 + 0.0j,
        ])
        noise_map = aa.VisibilitiesNoiseMap.ones(shape_slim=(7, ))
        uv_wavelengths = np.ones(shape=(7, 2))

        interferometer = aa.Interferometer(
            visibilities=visibilities,
            noise_map=noise_map,
            uv_wavelengths=uv_wavelengths,
            real_space_mask=real_space_mask,
            settings=aa.SettingsInterferometer(
                transformer_class=aa.TransformerNUFFT),
        )

        inversion = aa.Inversion(
            dataset=interferometer,
            mapper=mapper,
            regularization=reg,
            settings=aa.SettingsInversion(use_linear_operators=True,
                                          check_solution=False),
        )

        assert inversion.mapped_reconstructed_visibilities == pytest.approx(
            1.0 + 0.0j * np.ones(shape=(7, )), 1.0e-4)
        assert (np.imag(inversion.mapped_reconstructed_visibilities) <
                0.0001).all()
        assert (np.imag(inversion.mapped_reconstructed_visibilities) >
                0.0).all()
コード例 #3
0
    def test__15_grid__no_sub_grid(self):

        mask = aa.Mask2D.manual(
            mask=[
                [True, True, True, True, True, True, True],
                [True, True, True, True, True, True, True],
                [True, False, False, False, False, False, True],
                [True, False, False, False, False, False, True],
                [True, False, False, False, False, False, True],
                [True, True, True, True, True, True, True],
                [True, True, True, True, True, True, True],
            ],
            pixel_scales=1.0,
            sub_size=1,
        )

        # There is no sub-grid, so our grid are just the masked_image grid (note the NumPy weighted_data structure
        # ensures this has no sub-gridding)
        grid = aa.Grid2D.manual_mask(
            grid=[
                [0.9, -0.9],
                [1.0, -1.0],
                [1.1, -1.1],
                [0.9, 0.9],
                [1.0, 1.0],
                [1.1, 1.1],
                [-0.01, 0.01],
                [0.0, 0.0],
                [0.01, 0.01],
                [-0.9, -0.9],
                [-1.0, -1.0],
                [-1.1, -1.1],
                [-0.9, 0.9],
                [-1.0, 1.0],
                [-1.1, 1.1],
            ],
            mask=mask,
        )

        pix = aa.pix.Rectangular(shape=(3, 3))

        mapper = pix.mapper_from_grid_and_sparse_grid(
            grid=grid,
            sparse_grid=None,
            settings=aa.SettingsPixelization(use_border=False),
        )

        assert mapper.data_pixelization_grid == None
        assert mapper.source_pixelization_grid.shape_native_scaled == pytest.approx(
            (2.2, 2.2), 1.0e-4)
        assert mapper.source_pixelization_grid.origin == pytest.approx(
            (0.0, 0.0), 1.0e-4)

        assert (mapper.mapping_matrix == np.array([
            [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
        ])).all()
        assert mapper.shape_native == (3, 3)

        reg = aa.reg.Constant(coefficient=1.0)
        regularization_matrix = reg.regularization_matrix_from_mapper(
            mapper=mapper)

        assert (regularization_matrix == np.array([
            [2.00000001, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [-1.0, 3.00000001, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, -1.0, 2.00000001, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0],
            [-1.0, 0.0, 0.0, 3.00000001, -1.0, 0.0, -1.0, 0.0, 0.0],
            [0.0, -1.0, 0.0, -1.0, 4.00000001, -1.0, 0.0, -1.0, 0.0],
            [0.0, 0.0, -1.0, 0.0, -1.0, 3.00000001, 0.0, 0.0, -1.0],
            [0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 2.00000001, -1.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 3.00000001, -1.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 2.00000001],
        ])).all()

        image = aa.Array2D.ones(shape_native=(7, 7), pixel_scales=1.0)
        noise_map = aa.Array2D.ones(shape_native=(7, 7), pixel_scales=1.0)
        psf = aa.Kernel2D.no_blur(pixel_scales=1.0)

        imaging = aa.Imaging(image=image, noise_map=noise_map, psf=psf)

        masked_imaging = imaging.apply_mask(mask=mask)

        inversion = aa.Inversion(
            dataset=masked_imaging,
            mapper=mapper,
            regularization=reg,
            settings=aa.SettingsInversion(check_solution=False),
        )

        assert (
            inversion.blurred_mapping_matrix == mapper.mapping_matrix).all()
        assert (inversion.regularization_matrix == regularization_matrix).all()
        assert inversion.mapped_reconstructed_image == pytest.approx(
            np.ones(15), 1.0e-4)
コード例 #4
0
    def test__3x3_simple_grid__include_mask_with_offset_centre(self):

        mask = aa.Mask2D.manual(
            mask=[
                [True, True, True, True, True, True, True],
                [True, True, True, True, False, True, True],
                [True, True, True, False, False, False, True],
                [True, True, True, True, False, True, True],
                [True, True, True, True, True, True, True],
                [True, True, True, True, True, True, True],
                [True, True, True, True, True, True, True],
            ],
            pixel_scales=1.0,
            sub_size=1,
        )

        grid = np.array([[2.0, 1.0], [1.0, 0.0], [1.0, 1.0], [1.0, 2.0],
                         [0.0, 1.0]])

        grid = aa.Grid2D.manual_mask(grid=grid, mask=mask)

        pix = aa.pix.VoronoiMagnification(shape=(3, 3))
        sparse_grid = aa.Grid2DSparse.from_grid_and_unmasked_2d_grid_shape(
            grid=grid, unmasked_sparse_shape=pix.shape)

        mapper = pix.mapper_from_grid_and_sparse_grid(
            grid=grid,
            sparse_grid=sparse_grid,
            settings=aa.SettingsPixelization(use_border=False),
        )

        assert mapper.source_pixelization_grid.shape_native_scaled == pytest.approx(
            (2.0, 2.0), 1.0e-4)
        assert (mapper.source_pixelization_grid == sparse_grid).all()
        #   assert mapper.pixelization_grid.origin == pytest.approx((1.0, 1.0), 1.0e-4)

        assert isinstance(mapper, mappers.MapperVoronoi)

        assert (mapper.mapping_matrix == np.array([
            [1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 1.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0],
        ])).all()

        reg = aa.reg.Constant(coefficient=1.0)
        regularization_matrix = reg.regularization_matrix_from_mapper(
            mapper=mapper)

        assert (regularization_matrix == np.array([
            [3.00000001, -1.0, -1.0, -1.0, 0.0],
            [-1.0, 3.00000001, -1.0, 0.0, -1.0],
            [-1.0, -1.0, 4.00000001, -1.0, -1.0],
            [-1.0, 0.0, -1.0, 3.00000001, -1.0],
            [0.0, -1.0, -1.0, -1.0, 3.00000001],
        ])).all()

        image = aa.Array2D.ones(shape_native=(7, 7), pixel_scales=1.0)
        noise_map = aa.Array2D.ones(shape_native=(7, 7), pixel_scales=1.0)
        psf = aa.Kernel2D.no_blur(pixel_scales=1.0)

        imaging = aa.Imaging(image=image, noise_map=noise_map, psf=psf)

        masked_imaging = imaging.apply_mask(mask=mask)

        inversion = aa.Inversion(
            dataset=masked_imaging,
            mapper=mapper,
            regularization=reg,
            settings=aa.SettingsInversion(check_solution=False),
        )

        assert (
            inversion.blurred_mapping_matrix == mapper.mapping_matrix).all()
        assert (inversion.regularization_matrix == regularization_matrix).all()
        assert inversion.mapped_reconstructed_image == pytest.approx(
            np.ones(5), 1.0e-4)
コード例 #5
0
    def test__5_simple_grid__include_sub_grid(self):

        mask = aa.Mask2D.manual(
            mask=[
                [True, True, True, True, True, True, True],
                [True, True, True, True, True, True, True],
                [True, True, True, False, True, True, True],
                [True, True, False, False, False, True, True],
                [True, True, True, False, True, True, True],
                [True, True, True, True, True, True, True],
                [True, True, True, True, True, True, True],
            ],
            pixel_scales=2.0,
            sub_size=2,
        )

        # Assume a 2x2 sub-grid, so each of our 5 masked_image-pixels are split into 4.
        # The grid below is unphysical in that the (0.0, 0.0) terms on the end of each sub-grid probably couldn't
        # happen for a real lens calculation. This is to make a mapping_matrix matrix which explicitly tests the
        # sub-grid.
        grid = aa.Grid2D.manual_mask(
            grid=[
                [1.0, -1.0],
                [1.0, -1.0],
                [1.0, -1.0],
                [1.0, 1.0],
                [1.0, 1.0],
                [1.0, 1.0],
                [-1.0, -1.0],
                [-1.0, -1.0],
                [-1.0, -1.0],
                [-1.0, 1.0],
                [-1.0, 1.0],
                [-1.0, 1.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
            ],
            mask=mask,
        )

        pix = aa.pix.Rectangular(shape=(3, 3))

        mapper = pix.mapper_from_grid_and_sparse_grid(
            grid=grid,
            sparse_grid=None,
            settings=aa.SettingsPixelization(use_border=False),
        )

        assert mapper.data_pixelization_grid == None
        assert mapper.source_pixelization_grid.shape_native_scaled == pytest.approx(
            (2.0, 2.0), 1.0e-4)
        assert mapper.source_pixelization_grid.origin == pytest.approx(
            (0.0, 0.0), 1.0e-4)

        assert (mapper.mapping_matrix == np.array([
            [0.75, 0.0, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.0, 0.75],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
        ])).all()
        assert mapper.shape_native == (3, 3)

        reg = aa.reg.Constant(coefficient=1.0)
        regularization_matrix = reg.regularization_matrix_from_mapper(
            mapper=mapper)

        assert (regularization_matrix == np.array([
            [2.00000001, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [-1.0, 3.00000001, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, -1.0, 2.00000001, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0],
            [-1.0, 0.0, 0.0, 3.00000001, -1.0, 0.0, -1.0, 0.0, 0.0],
            [0.0, -1.0, 0.0, -1.0, 4.00000001, -1.0, 0.0, -1.0, 0.0],
            [0.0, 0.0, -1.0, 0.0, -1.0, 3.00000001, 0.0, 0.0, -1.0],
            [0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 2.00000001, -1.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 3.00000001, -1.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 2.00000001],
        ])).all()

        image = aa.Array2D.ones(shape_native=(7, 7), pixel_scales=1.0)
        noise_map = aa.Array2D.ones(shape_native=(7, 7), pixel_scales=1.0)
        psf = aa.Kernel2D.no_blur(pixel_scales=1.0)

        imaging = aa.Imaging(image=image, noise_map=noise_map, psf=psf)

        masked_imaging = imaging.apply_mask(mask=mask)

        inversion = aa.Inversion(
            dataset=masked_imaging,
            mapper=mapper,
            regularization=reg,
            settings=aa.SettingsInversion(check_solution=False),
        )

        assert (
            inversion.blurred_mapping_matrix == mapper.mapping_matrix).all()
        assert (inversion.regularization_matrix == regularization_matrix).all()
        assert inversion.mapped_reconstructed_image == pytest.approx(
            np.ones(5), 1.0e-4)