コード例 #1
0
def test_autogenes_run_custom_objectives():

    ag = AutoGeneS(np.random.randn(2, 5))

    # Lambda as objective
    obj1 = lambda x: len(x)
    ag.run(ngen=0,
           weights=(1, 1),
           objectives=(obj1, 'distance'),
           verbose=False)

    assert ag.objectives_func == [obj1, ga_objectives.distance]
    assert ag.objectives_names == ['<lambda>', 'distance']

    # Invalid objective
    def invalid_objective(data):
        return data

    with pytest.raises(Exception):
        ag.run(ngen=0,
               weights=(-1, 1),
               objectives=(invalid_objective, 'distance'),
               verbose=False)

    # Normal function
    def count(data):
        return data.shape[0]

    ag.run(ngen=0,
           weights=(-1, 1),
           objectives=(count, 'distance'),
           verbose=False)
    assert ag.objectives_func == [count, ga_objectives.distance]
    assert ag.objectives_names == ['count', 'distance']
コード例 #2
0
def ag_simple():
  data = np.zeros((3,6))
  data[0,0:2] = 1
  data[1,2:4] = 1
  data[2,4:6] = 1

  return AutoGeneS(data)
コード例 #3
0
def test_autogenes_init():

    with pytest.raises(Exception):
        AutoGeneS()

    with pytest.raises(Exception):
        AutoGeneS([[11, 1], [1]])

    with pytest.raises(ValueError,
                       match="data is expected to have two dimensions"):
        AutoGeneS(np.array([1]))

    with pytest.raises(ValueError,
                       match="At least two rows \\(cell types\\) expected"):
        AutoGeneS(np.int_([[1, 2, 3]]))

    with pytest.raises(
            ValueError,
            match=
            "Number of columns \\(genes\\) must be >= number of rows \\(cell types\\)"
    ):
        AutoGeneS(np.int_(np.zeros((5, 2))))

    with pytest.raises(
            ValueError,
            match=
            "Number of columns \\(genes\\) must be >= number of rows \\(cell types\\)"
    ):
        AutoGeneS(np.int_(np.zeros((2, 1))))

    with pytest.raises(ValueError,
                       match="Some entries in data are not scalars"):
        AutoGeneS(np.array([[1, np.inf], [1, np.nan]]))

    arr1 = np.float64([[-1, 12.5], [1, 1E10]])
    ag1 = AutoGeneS(arr1)
    assert ag1.selection == None
    assert np.array_equal(ag1.data, arr1)
コード例 #4
0
def test_autogenes_run_objectives_and_weights():

    ag = AutoGeneS(np.random.randn(2, 5))

    ag.run()
    assert ag.objectives_func == [
        ga_objectives.correlation, ga_objectives.distance
    ]

    with pytest.raises(Exception, match="Need objectives for weights"):
        ag.run(weights=(1, 1))

    with pytest.raises(Exception, match="Need weights for objectives"):
        ag.run(objectives=('distance', 'test'))

    with pytest.raises(ValueError, match="No such objective: test"):
        ag.run(weights=(1, 1), objectives=('distance', 'test'))

    with pytest.raises(ValueError, match="Invalid objective"):
        ag.run(weights=(1, 1), objectives=(1, 1))

    with pytest.raises(
            ValueError,
            match="Number of weights does not match number of objectives"):
        ag.run(weights=(3, 4, 5), objectives=('distance', 'correlation'))

    try:
        ag.run(weights=(1, ), objectives=('distance', ), verbose=False)
    except Exception:
        pytest.fail("Should support single objective")

    with pytest.raises(Exception):
        ag.run(weights=1, objectives=('distance', ))

    with pytest.raises(Exception):
        ag.run(weights=('a', ), objectives=('distance', ))

    with pytest.warns(UserWarning):
        ag.run(weights=(3, 0, 5),
               objectives=('distance', 'num_genes', 'correlation'))
        assert ag.weights == (3, 5)
        assert ag.objectives_func == [
            ga_objectives.distance, ga_objectives.correlation
        ]
        assert ag.objectives_names == ['distance', 'correlation']
コード例 #5
0
def test_autogenes_run_general_args():

    ag = AutoGeneS(np.random.randn(2, 5))

    # mode = standard

    ag.run(ngen=0, mode='standard', verbose=False)

    # mode = fixed

    with pytest.raises(ValueError, match="You need to supply nfeatures"):
        ag.run(mode='fixed')

    with pytest.raises(
            ValueError,
            match=
            "nfeatures doesn't apply to standard mode \\(did you mean mode='fixed'\\?\\)"
    ):
        ag.run(nfeatures=10)

    with pytest.raises(
            ValueError,
            match="nfeatures must be <= the number of columns \\(genes\\)"):
        ag.run(mode='fixed', nfeatures=10)

    with pytest.raises(
            ValueError,
            match="nfeatures must be >= the number of rows \\(cell types\\)"):
        ag.run(mode='fixed', nfeatures=1)

    ag.run(ngen=0, mode='fixed', nfeatures=2, verbose=False)

    with pytest.raises(ValueError, match="No such objective"):
        ag.run(mode='fixed',
               nfeatures=3,
               weights=(1, 1),
               objectives=('a', 'b'))
コード例 #6
0
def ag_random():
  np.random.seed(0)
  data = np.random.randint(0,5,(3,10))
  return AutoGeneS(data)
コード例 #7
0
def ag():

  ag = AutoGeneS(np.identity(10)[:5])
  return ag