def load(cls, checkpoint): """Load trained Image Classifier from directory specified by `checkpoint`. """ state_dict = load(checkpoint) args = state_dict['args'] results = pkl.loads(state_dict['results']) eval_func = state_dict['eval_func'] scheduler_checkpoint = state_dict['scheduler_checkpoint'] model_params = state_dict['model_params'] ensemble = state_dict['ensemble'] if ensemble <= 1: model_args = copy.deepcopy(args) model_args.update(results['best_config']) model = get_network(args.net, num_classes=results['num_classes'], ctx=mx.cpu(0)) update_params(model, model_params) else: raise NotImplemented return cls(model, results, eval_func, scheduler_checkpoint, args, ensemble, format_results=False)
def load(cls, checkpoint): """ load trained object detector from the file specified by 'checkpoint' """ state_dict = load(checkpoint) args = state_dict['args'] results = pkl.loads(state_dict['results']) scheduler_checkpoint = state_dict['scheduler_checkpoint'] model_params = state_dict['model_params'] classes = state_dict['classes'] model = get_network(args.meta_arch, args.net, classes, ctx=mx.cpu(0), syncbn=args.syncbn) update_params(model, model_params) return cls(model, results, scheduler_checkpoint, args, format_results=False)
def load(self, checkname=None): checkname = checkname if checkname else self.checkname state_dict = load(checkname) self.load_state_dict(state_dict)