def get_train_data(rec_train, batch_size, data_nthreads, input_size, crop_ratio, args): def train_batch_fn(batch, ctx): data = batch[0].as_in_context(ctx) label = batch[1].as_in_context(ctx) return data, label jitter_param = 0.4 lighting_param = 0.1 resize = int(math.ceil(input_size / crop_ratio)) train_transforms = [] if args.auto_aug: print('Using AutoAugment') from autogluon.utils.augment import AugmentationBlock, autoaug_imagenet_policies train_transforms.append(AugmentationBlock(autoaug_imagenet_policies())) from gluoncv.utils.transforms import EfficientNetRandomCrop from autogluon.utils import pil_transforms if input_size >= 320: train_transforms.extend([ EfficientNetRandomCrop(input_size), pil_transforms.Resize((input_size, input_size), interpolation=Image.BICUBIC), pil_transforms.RandomHorizontalFlip(), pil_transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomLighting(lighting_param), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) else: train_transforms.extend([ transforms.RandomResizedCrop(input_size), transforms.RandomFlipLeftRight(), transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param, saturation=jitter_param), transforms.RandomLighting(lighting_param), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) transform_train = transforms.Compose(train_transforms) train_set = mx.gluon.data.vision.ImageRecordDataset( rec_train).transform_first(transform_train) train_sampler = SplitSampler(len(train_set), num_parts=num_workers, part_index=rank) train_data = gluon.data.DataLoader( train_set, batch_size=batch_size, # shuffle=True, last_batch='discard', num_workers=data_nthreads, sampler=train_sampler) return train_data, train_batch_fn
def get_val_data(rec_val, batch_size, data_nthreads, input_size, crop_ratio): def val_batch_fn(batch, ctx): data = batch[0].as_in_context(ctx) label = batch[1].as_in_context(ctx) return data, label normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) crop_ratio = crop_ratio if crop_ratio > 0 else 0.875 resize = int(math.ceil(input_size / crop_ratio)) from gluoncv.utils.transforms import EfficientNetCenterCrop from autogluon.utils import pil_transforms if input_size >= 320: transform_test = transforms.Compose([ pil_transforms.ToPIL(), EfficientNetCenterCrop(input_size), pil_transforms.Resize((input_size, input_size), interpolation=Image.BICUBIC), pil_transforms.ToNDArray(), transforms.ToTensor(), normalize ]) else: transform_test = transforms.Compose([ transforms.Resize(resize, keep_ratio=True), transforms.CenterCrop(input_size), transforms.ToTensor(), normalize ]) val_set = mx.gluon.data.vision.ImageRecordDataset(rec_val).transform_first( transform_test) val_sampler = SplitSampler(len(val_set), num_parts=num_workers, part_index=rank) val_data = gluon.data.DataLoader(val_set, batch_size=batch_size, num_workers=data_nthreads, sampler=val_sampler) return val_data, val_batch_fn
def get_data_loader(data_dir, batch_size, num_workers): normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) jitter_param = 0.4 lighting_param = 0.1 input_size = opt.input_size crop_ratio = opt.crop_ratio if opt.crop_ratio > 0 else 0.875 resize = int(math.ceil(input_size / crop_ratio)) def batch_fn(batch, ctx): data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0) label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0) return data, label transform_train = [] if opt.auto_aug: print('Using AutoAugment') from autogluon.utils.augment import AugmentationBlock, autoaug_imagenet_policies transform_train.append( AugmentationBlock(autoaug_imagenet_policies())) from gluoncv.utils.transforms import EfficientNetRandomCrop, EfficientNetCenterCrop from autogluon.utils import pil_transforms if input_size >= 320: transform_train.extend([ EfficientNetRandomCrop(input_size), pil_transforms.Resize((input_size, input_size), interpolation=Image.BICUBIC), pil_transforms.RandomHorizontalFlip(), pil_transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomLighting(lighting_param), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) else: transform_train.extend([ transforms.RandomResizedCrop(input_size), transforms.RandomFlipLeftRight(), transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param, saturation=jitter_param), transforms.RandomLighting(lighting_param), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) transform_train = transforms.Compose(transform_train) train_data = gluon.data.DataLoader(imagenet.classification.ImageNet( data_dir, train=True).transform_first(transform_train), batch_size=batch_size, shuffle=True, last_batch='discard', num_workers=num_workers) if input_size >= 320: transform_test = transforms.Compose([ pil_transforms.ToPIL(), EfficientNetCenterCrop(input_size), pil_transforms.Resize((input_size, input_size), interpolation=Image.BICUBIC), pil_transforms.ToNDArray(), transforms.ToTensor(), normalize ]) else: transform_test = transforms.Compose([ transforms.Resize(resize, keep_ratio=True), transforms.CenterCrop(input_size), transforms.ToTensor(), normalize ]) val_data = gluon.data.DataLoader(imagenet.classification.ImageNet( data_dir, train=False).transform_first(transform_test), batch_size=batch_size, shuffle=False, num_workers=num_workers) return train_data, val_data, batch_fn