def plot_data(self):
        # construct figure
        fig, axs = plt.subplots(1, 3, figsize=(8, 3))

        # create subplot with 2 panels
        gs = gridspec.GridSpec(1, 3, width_ratios=[1, 2, 1])
        ax1 = plt.subplot(gs[0])
        ax1.axis('off')
        ax2 = plt.subplot(gs[1])
        ax3 = plt.subplot(gs[2])
        ax3.axis('off')

        if np.shape(self.x)[1] == 2:
            ax2 = plt.subplot(gs[1], projection='3d')

            ind0 = np.argwhere(self.y == +1)
            ax2.scatter(self.x[ind0, 0],
                        self.x[ind0, 1],
                        self.y[ind0],
                        s=55,
                        color=self.colors[0],
                        edgecolor='k')

            ind1 = np.argwhere(self.y == -1)
            ax2.scatter(self.x[ind1, 0],
                        self.x[ind1, 1],
                        self.y[ind1],
                        s=55,
                        color=self.colors[1],
                        edgecolor='k')
コード例 #2
0
    def plot_subproblem_data(self):
        C = len(np.unique(self.y))
        
        # construct figure
        fig = plt.figure(figsize=(9,2.5))

        # create subplot with 2 panels
        gs = gridspec.GridSpec(1, C) 
        
        # scatter points
        for c in range(C):
            # create subproblem data
            y_temp = copy.deepcopy(self.y)
            ind = np.argwhere(y_temp.astype(int) == (c))
            ind = ind[:,0]
            ind2 = np.argwhere(y_temp.astype(int) != (c))
            ind2 = ind2[:,0]
            y_temp[ind] = 1
            y_temp[ind2] = -1
        
            # create new axis to plot
            ax = plt.subplot(gs[c])
            xmin,xmax = self.scatter_pts(ax,self.x,y_temp)
            
            # pretty up panel
            title = 'class ' + str(c+1) + ' versus all'
            ax.set_title(title,fontsize = 14)
コード例 #3
0
    def standard_normalizer(self, x):
        # compute the mean and standard deviation of the input
        x_means = np.nanmean(x, axis=1)[:, np.newaxis]
        x_stds = np.nanstd(x, axis=1)[:, np.newaxis]

        # check to make sure thta x_stds > small threshold, for those not
        # divide by 1 instead of original standard deviation
        ind = np.argwhere(x_stds < 10**(-2))
        if len(ind) > 0:
            ind = [v[0] for v in ind]
            adjust = np.zeros((x_stds.shape))
            adjust[ind] = 1.0
            x_stds += adjust

        # fill in any nan values with means
        ind = np.argwhere(np.isnan(x) == True)
        for i in ind:
            x[i[0], i[1]] = x_means[i[0]]

        # create standard normalizer function
        normalizer = lambda data: (data - x_means) / x_stds

        # create inverse standard normalizer
        inverse_normalizer = lambda data: data * x_stds + x_means

        # return normalizer
        return normalizer, inverse_normalizer
    def plot_classif(self, id_1, id_2, labels):
        # create figure for plotting
        fig = plt.figure(figsize=(5, 5))

        # setup colors / labels for plot
        red_patch = mpatches.Patch(color='red', label=labels[0])
        blue_patch = mpatches.Patch(color='blue', label=labels[1])
        plt.legend(handles=[red_patch, blue_patch])
        plt.legend(handles=[red_patch, blue_patch], loc=2)

        # scatter plot data
        ind = np.argwhere(self.y == -1)
        ind = [v[1] for v in ind]
        plt.scatter(self.x_orig[id_1, ind],
                    self.x_orig[id_2, ind],
                    color='r',
                    s=30)  #plotting the data

        ind = np.argwhere(self.y == +1)
        ind = [v[1] for v in ind]

        plt.scatter(self.x_orig[id_1, ind],
                    self.x_orig[id_2, ind],
                    color='b',
                    s=30)  #plotting the data
        plt.show()
コード例 #5
0
ファイル: 7.3.py プロジェクト: SarahPing17/Machine-Learning
def plot_all(X, y, w0,w1,w2):
    # custom colors for plotting points
    # red = [1, 0, 0.4]
    # blue = [0, 0.4, 1]
    # green = [0.4, 1, 0]
    # yellow = [1, 0.4, 0]

    # scatter plot points
    fig = plt.figure(figsize=(4, 4))
    ind = np.argwhere(y == 0)
    ind = [s[0] for s in ind]
    plt.scatter(X[ind,1], X[ind,2], color='blue', edgecolor='k', s=25)
    ind = np.argwhere(y == 1)
    ind = [s[0] for s in ind]
    plt.scatter(X[ind,1], X[ind,2], color='red', edgecolor='k', s=25)
    ind = np.argwhere(y == 2)
    ind = [s[0] for s in ind]
    plt.scatter(X[ind,1], X[ind,2], color='green', edgecolor='k', s=25)
    plt.grid('off')

    # plot separator
    s = np.linspace(0, 1, 100)
    plt.plot(s, (-w0[0] - w0[1] * s) / w0[2], color='k', linewidth=2)
    plt.plot(s, (-w1[0] - w1[1] * s) / w1[2], color='k', linewidth=2)
    plt.plot(s, (-w2[0] - w2[1] * s) / w2[2], color='k', linewidth=2)

    # clean up plot
    plt.xlim([-0.1, 1.1])
    plt.ylim([-0.1, 1.1])
    plt.show()
コード例 #6
0
def train(x,y,feature_transforms,**kwargs):
    # get and run optimizer to solve two-class problem
    N = np.shape(x)[0]
    C = np.size(np.unique(y))
    max_its = 100; 
    alpha_choice = 1; 
    cost_name = 'softmax';
    normalize = 'standard'
    w = 0.1*np.random.randn(N+1,1); 
    
    # switches for user choices
    if 'max_its' in kwargs:
        max_its = kwargs['max_its']
    if 'alpha_choice' in kwargs:
        alpha_choice = kwargs['alpha_choice']
    if 'cost_name' in kwargs:
        cost_name = kwargs['cost_name']
    if 'w' in kwargs:
        w = kwargs['w']
    if 'normalize' in kwargs:
        normalize = kwargs['normalize']

    # loop over subproblems and solve
    weight_histories = []
    for c in range(0,C):
        # prepare temporary C vs notC sub-probem labels
        y_temp = copy.deepcopy(y)
        ind = np.argwhere(y_temp.astype(int) == c)
        ind = ind[:,1]
        ind2 = np.argwhere(y_temp.astype(int) != c)
        ind2 = ind2[:,1]
        y_temp[0,ind] = 1
        y_temp[0,ind2] = -1
        
        # run on normalized data
        run = basic_runner.Setup(x,y_temp,feature_transforms,cost_name,normalize = normalize)
        run.fit(w=w,alpha_choice = alpha_choice,max_its = max_its)
        
        # store each weight history
        weight_histories.append(run.weight_history)
        
    # combine each individual classifier weights into single weight 
    # matrix per step
    R = len(weight_histories[0])
    combined_weights = []
    for r in range(R):
        a = []
        for c in range(C):
            a.append(weight_histories[c][r])
        a = np.array(a).T
        a = a[0,:,:]
        combined_weights.append(a)
        
    # run combined weight matrices through fusion rule to calculate
    # number of misclassifications per step
    counter = basic_runner.Setup(x,y,feature_transforms,'multiclass_counter',normalize = normalize).cost_func
    count_history = [counter(v) for v in combined_weights]
        
    return combined_weights, count_history
コード例 #7
0
    def two_input_contour_plot(self, weight_history, x, y, **kwargs):
        cost_name = 'softmax'
        if 'cost_name' in kwargs:
            cost_name = kwargs['cost_name']

        # compute number of classes
        C = np.shape(weight_history[0])[1]

        ##### construct figure with panels #####
        # construct figure
        fig = plt.figure(figsize=(10, 6))

        # create figure with single plot for contour
        gs = gridspec.GridSpec(2, 2)

        ### make contour right plot - as well as horizontal and vertical axes ###
        for c in range(C):
            # prepare temporary C vs notC sub-probem labels
            y_temp = copy.deepcopy(y)
            ind = np.argwhere(y_temp.astype(int) == c)
            ind = ind[:, 1]
            ind2 = np.argwhere(y_temp.astype(int) != c)
            ind2 = ind2[:, 1]
            y_temp[0, ind] = 1
            y_temp[0, ind2] = -1

            g = cost_lib.choose_cost(x, y_temp, cost_name)

            # create panel
            ax = plt.subplot(gs[c])
            ax.set_aspect('equal')

            # plot contour and path
            w_hist = [
                weight_history[v][:, c][:, np.newaxis]
                for v in range(len(weight_history))
            ]
            self.contour_plot_setup(c, C, g, ax, **kwargs)  # draw contour plot
            self.draw_weight_path(ax, w_hist,
                                  **kwargs)  # draw path on contour plot

            # label axes
            ax.set_xlabel(r'$w_0^{(' + str(c + 1) + ')}$', fontsize=15)
            ax.set_ylabel(r'$w_1^{(' + str(c + 1) + ')}$',
                          fontsize=15,
                          labelpad=15,
                          rotation=0)

        # remove whitespace from figure
        #gs.update(wspace=0.005, hspace=0.15) # set the spacing between axes.
        #fig.subplots_adjust(left=0, right=1, bottom=0, top=1) # remove whitespace
        fig.subplots_adjust(wspace=0.001, hspace=0.001)

        # plot
        plt.show()
コード例 #8
0
        def animate(k):
            # clear panels
            ax1.cla()
            ax2.cla()
            ax3.cla()

            # print rendering update
            if np.mod(k+1,25) == 0:
                print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames))
            if k == num_frames - 1:
                print ('animation rendering complete!')
                time.sleep(1.5)
                clear_output()
            
            # scatter data
            ind0 = np.argwhere(self.y == +1)
            ind0 = [e[1] for e in ind0]
            ind1 = np.argwhere(self.y == -1)
            ind1 = [e[1] for e in ind1]
            for ax in [ax1,ax2,ax3]:
                ax.scatter(self.x[0,ind0],self.x[1,ind0],s = pt_size, color = self.colors[0], edgecolor = 'k',antialiased=True)
                ax.scatter(self.x[0,ind1],self.x[1,ind1],s = pt_size, color = self.colors[1], edgecolor = 'k',antialiased=True)
                
            if k == 0:
                ax1.set_title(str(0) + ' units fit to data',fontsize = 14,color = 'w')
                ax1.set_title(str(0) + ' units fit to data',fontsize = 14,color = 'w')
                ax1.set_title(str(0) + ' units fit to data',fontsize = 14,color = 'w')
                
                ax1.set_xlim([xmin1,xmax1])
                ax1.set_ylim([xmin2,xmax2])
                ax2.set_xlim([xmin1,xmax1])
                ax2.set_ylim([xmin2,xmax2])                
                ax3.set_xlim([xmin1,xmax1])
                ax3.set_ylim([xmin2,xmax2])
                
            # plot fit
            if k > 0:
                # get current run
                a1 = inds1[k-1] 
                a2 = inds2[k-1] 
                a3 = inds3[k-1] 

                run1 = runs1[a1]
                a1 = len(run1.w_init) - 1

                run2 = runs2[a2]
                model3 = runs3.models[a3]
                steps = runs3.best_steps[:a3+1]
                
                # plot models to data
                self.draw_fit(ax1,run1,a1)
                self.draw_fit(ax2,run2,a2 + 1)
                self.draw_boosting_fit(ax3,steps,a3)
                
            return artist,
コード例 #9
0
        def animate(k):
            # clear panels
            ax.cla()

            # print rendering update
            if np.mod(k + 1, 25) == 0:
                print('rendering animation frame ' + str(k + 1) + ' of ' +
                      str(num_frames))
            if k == num_frames - 1:
                print('animation rendering complete!')
                time.sleep(1.5)
                clear_output()

            #### scatter data ####
            # plot points in 2d and 3d
            ind0 = np.argwhere(self.y == +1)
            ind0 = [e[1] for e in ind0]
            ax.scatter(self.x[0, ind0],
                       self.x[1, ind0],
                       s=55,
                       color=self.colors[0],
                       edgecolor='k')

            ind1 = np.argwhere(self.y == -1)
            ind1 = [e[1] for e in ind1]
            ax.scatter(self.x[0, ind1],
                       self.x[1, ind1],
                       s=55,
                       color=self.colors[1],
                       edgecolor='k')

            # plot boundary
            if k > 0:
                # get current run for cost function history plot
                a = inds[k - 1]
                model = run.models[a]
                steps = run.best_steps[:a + 1]

                # pluck out current weights
                self.draw_boosting_fit(ax, steps, a)

            # cleanup panel
            ax.set_yticklabels([])
            ax.set_xticklabels([])
            ax.set_xticks([])
            ax.set_yticks([])
            ax.set_xlabel(r'$x_1$', fontsize=15)
            ax.set_ylabel(r'$x_2$', fontsize=15, rotation=0, labelpad=20)

            return artist,
 def animate(k):
     # clear panels
     ax1.cla()
     ax2.cla()
     
     # print rendering update
     if np.mod(k+1,25) == 0:
         print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames))
     if k == num_frames - 1:
         print ('animation rendering complete!')
         time.sleep(1.5)
         clear_output()
     
     #### scatter data ####
     # plot points in 2d and 3d
     ind0 = np.argwhere(self.y == +1)
     ind0 = [e[1] for e in ind0]
     ax1.scatter(self.x[0,ind0],self.x[1,ind0],s = 55, color = self.colors[0], edgecolor = 'k')
                 
     ind1 = np.argwhere(self.y == -1)
     ind1 = [e[1] for e in ind1]
     ax1.scatter(self.x[0,ind1],self.x[1,ind1],s = 55, color = self.colors[1], edgecolor = 'k')
     
     # plot boundary
     if k > 0:
         # get current run for cost function history plot
         a = inds[k-1]
         run = runs[a]
         
         # pluck out current weights 
         self.draw_fit(ax1,run,a)
         
         # cost function value
         ax2.plot(np.arange(1,num_elements + 1),cost_evals,color = 'k',linewidth = 2.5,zorder = 1)
         ax2.scatter(a + 1,cost_evals[a],color = self.colors[0],s = 70,edgecolor = 'w',linewidth = 1.5,zorder = 3)
     
     # cleanup panels
     ax1.set_yticklabels([])
     ax1.set_xticklabels([])
     ax1.set_xticks([])
     ax1.set_yticks([])
     ax1.set_xlabel(r'$x_1$',fontsize = 15)
     ax1.set_ylabel(r'$x_2$',fontsize = 15,rotation = 0,labelpad = 20)  
     
     ax2.set_xlabel('number of units',fontsize = 12)
     ax2.set_title('cost function plot',fontsize = 14)
     ax2.set_xlim([minxc,maxxc])
     ax2.set_ylim([ymin,ymax])
 
     return artist,
コード例 #11
0
def ZCA_sphere(x,**kwargs):
    '''
    A function for producing the ZCA sphereing on an input dataset X.  
    '''   
    # Step 1: mean-center the data
    x_means = np.mean(x,axis = 1)[:,np.newaxis]
    x_centered = x - x_means

    # Step 2: compute pca transform on mean-centered data
    d,V = PCA(x_centered,**kwargs)
    
    # Step 3: divide off standard deviation of each (transformed) input, 
    # which are equal to the returned eigenvalues in 'd'.  
    stds = (d[:,np.newaxis])**(0.5)
    
    # check to make sure thta x_stds > small threshold, for those not
    # divide by 1 instead of original standard deviation
    ind = np.argwhere(stds < 10**(-2))
    if len(ind) > 0:
        ind = [v[0] for v in ind]
        adjust = np.zeros((stds.shape))
        adjust[ind] = 1.0
        stds += adjust
    
    pca_sphered_x = np.dot(V.T,x - x_means)/stds
        
    # Step 3: divide off standard deviation of each (transformed) input, 
    # which are equal to the returned eigenvalues in 'd'. 
    # Then rotate back to original orientation of space
    stds = (d[:,np.newaxis])**(0.5)
    normalizer = lambda data: np.dot(V,np.dot(V.T,data - x_means)/stds)
    
    return normalizer
コード例 #12
0
    def PCA_sphereing(self, x, **kwargs):
        # Step 1: mean-center the data
        x_means = np.mean(x, axis=1)[:, np.newaxis]
        x_centered = x - x_means

        # Step 2: compute pca transform on mean-centered data
        d, V = self.PCA(x_centered, **kwargs)

        # Step 3: divide off standard deviation of each (transformed) input,
        # which are equal to the returned eigenvalues in 'd'.
        stds = (d[:, np.newaxis])**(0.5)

        # check to make sure thta x_stds > small threshold, for those not
        # divide by 1 instead of original standard deviation
        ind = np.argwhere(stds < 10**(-2))
        if len(ind) > 0:
            ind = [v[0] for v in ind]
            adjust = np.zeros((stds.shape))
            adjust[ind] = 1.0
            stds += adjust

        normalizer = lambda data: np.dot(V.T, data - x_means) / stds

        # create inverse normalizer
        inverse_normalizer = lambda data: np.dot(V, data * stds) + x_means

        # return normalizer
        return normalizer, inverse_normalizer
 def plot_data(self,ax,special_class,special_size):
     # scatter points in both panels
     class_nums = np.unique(self.y)
     C = len(class_nums)
     for c in range(C):
         ind = np.argwhere(self.y == class_nums[c])
         ind = [v[1] for v in ind]
         s = 80
         if class_nums[c] == special_class:
             s = special_size
         ax.scatter(self.x[0,ind],self.x[1,ind],s = s,color = self.color_opts[c],edgecolor = 'k',linewidth = 1.5)
         
     # control viewing limits
     minx = min(self.x[0,:])
     maxx = max(self.x[0,:])
     gapx = (maxx - minx)*0.1
     minx -= gapx
     maxx += gapx
     
     miny = min(self.x[1,:])
     maxy = max(self.x[1,:])
     gapy = (maxy - miny)*0.1
     miny -= gapy
     maxy += gapy
     
     ax.set_xlim([minx,maxx])
     ax.set_ylim([miny,maxy])
     #ax.axis('equal')
     ax.axis('off')
    def animate_weightings(self,csvname,**kwargs):
        self.x,self.y,special_class = self.load_data(csvname)
        self.color_opts = np.array([[1,0,0.4], [ 0, 0.4, 1],[0, 1, 0.5],[1, 0.7, 0.5],[0.7, 0.6, 0.5]])

        # pick out user-defined arguments
        num_slides = 2
        if 'num_slides' in kwargs:
            num_slides = kwargs['num_slides']

        # make range for plot
        base_size = 100
        size_range = np.linspace(base_size, 20*base_size, num_slides)
        weight_range = np.linspace(1,10,num_slides)
        
        # generate figure to plot onto
        fig = plt.figure(figsize=(5,5))
        artist = fig
        ax = plt.subplot(111)
        
        # animation sub-function
        ind1 = np.argwhere(self.y == special_class)
        ind1 = [v[1] for v in ind1]
        
        # run animator
        max_its = 5
        w = 0.1*np.random.randn(3,1)
        g = bits.softmax
        def animate(k):
            ax.cla()
            
            # print rendering update
            if np.mod(k+1,25) == 0:
                print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_slides))
            if k == num_slides - 1:
                print ('animation rendering complete!')
                time.sleep(1.5)
                clear_output()
            
            # define beta
            special_size = size_range[k]
            special_weight = weight_range[k]
            beta = np.ones((1,self.y.size))
            beta[:,ind1] = special_weight
            
            # run optimizer
            w_hist,g_hist = bits.newtons_method(g,w,self.x,self.y,beta,max_its)
            w_best = w_hist[-1]
            self.model = lambda data: bits.model(data,w_best)
            
            # scatter plot all data
            self.plot_data(ax,special_class,special_size)
            
            # draw decision boundary
            self.draw_decision_boundary(ax)
            return artist,
        
        anim = animation.FuncAnimation(fig, animate ,frames=num_slides, interval=num_slides, blit=True)
        
        return(anim)
コード例 #15
0
 def pad_tensor(self, tensor, kernel_size):
     odd_nums = np.array([int(2 * n + 1) for n in range(100)])
     pad_val = np.argwhere(odd_nums == kernel_size)[0][0]
     tensor_padded = np.zeros(
         (np.shape(tensor)[0], np.shape(tensor)[1] + 2 * pad_val,
          np.shape(tensor)[2] + 2 * pad_val))
     tensor_padded[:, pad_val:-pad_val, pad_val:-pad_val] = tensor
     return tensor_padded
コード例 #16
0
def measureED(x, y, yerr, tpeak, fwhm, num_fwhm=10):
    '''
    Measure the equivalent duration of a flare in a smoothed light
    curve. FINDflare typically doesnt identify the entire flare, so
    integrate num_fwhm/2*fwhm away from the peak. As long as the light 
    curve is flat away from the flare, the region around the flare should
    not significantly contribute.

    Parameters
    ----------
    x : numpy array
        time values from the entire light curve
    y : numpy array
        flux values from the entire light curve
    yerr : numpy array
        error in the flux values
    tpeak : float
        Peak time of the flare detection
    fwhm : float
        Full-width half maximum of the flare
    num_fwhm : float, optional
        Size of the integration window in units of fwhm
    Returns
    -------
        ED - Equivalent duration of the flare
        ED_err - The uncertainty in the equivalent duration
    '''

    try:
        width = fwhm * num_fwhm
        istart = np.argwhere(x > tpeak - width / 2)[0]
        ipeak = np.argwhere(x > tpeak)[0]
        istop = np.argwhere(x > tpeak + width / 2)[0]

        dx = np.diff(x)
        x = x[:-1]
        y = y[:-1]
        yerr = yerr[:-1]
        mask = (x > x[istart]) & (x < x[istop])
        ED = np.trapz(y[mask], x[mask])
        ED_err = np.sqrt(np.sum((dx[mask] * yerr[mask])**2))

    except IndexError:
        return -1, -1

    return ED, ED_err
コード例 #17
0
def d_x_d_t_numpy_batchs(y, x, t, rrpc, delta_t):
    alpha = 1 - ((x * x) + (y * y))**0.5
    cast = (t / delta_t).astype(int)
    tensor_temp = 1 + cast
    tensor_temp = tensor_temp % len(rrpc)

    specific_rrpc_values = rrpc[tensor_temp]

    omega = np.zeros_like(x).astype(float)

    zero_indexes = np.argwhere(specific_rrpc_values == 0)[:, 0]
    non_zero_indexes = np.argwhere(specific_rrpc_values != 0)[:, 0]

    omega[zero_indexes] = (2.0 * math.pi / 1e-3)
    omega[non_zero_indexes] = (2.0 * math.pi /
                               specific_rrpc_values[non_zero_indexes])
    f_x = alpha * x - omega * y
    return f_x
コード例 #18
0
def make_matrix_full_row_rank(x, min_ev=1e-8):
    """Return a matrix with full row rank such that
    x.T @ x = new_x.T @ new_x
    """
    u, s, vh = np.linalg.svd(x, full_matrices=False)

    s_nonzero = np.argwhere(s > min_ev)[:,0]
    new_x = np.diag(s[s_nonzero]) @ vh[s_nonzero, :]
    return new_x
コード例 #19
0
    def plot_data_and_subproblem_separators(self):
        # determine plotting ranges
        minx = min(min(self.x[:, 0]), min(self.x[:, 1]))
        maxx = max(max(self.x[:, 0]), max(self.x[:, 1]))
        gapx = (maxx - minx) * 0.1
        minx -= gapx
        maxx += gapx

        # initialize figure, plot data, and dress up panels with axes labels etc.
        num_classes = np.size(np.unique(self.y))

        ##### setup figure to plot #####
        # initialize figure
        fig = plt.figure(figsize=(9, 5))
        gs = gridspec.GridSpec(2, num_classes)

        # create subplots for each sub-problem
        r = np.linspace(minx, maxx, 400)
        for a in range(0, num_classes):
            # setup current axis
            ax = plt.subplot(gs[a], aspect='equal')

            # get current weights
            w = self.W[a]

            # color current class
            ax.scatter(self.x[:, 0], self.x[:, 1], s=30, color='0.75')
            t = np.argwhere(self.y == a)
            t = t[:, 0]
            ax.scatter(self.x[t, 0],
                       self.x[t, 1],
                       s=50,
                       color=self.colors[a],
                       edgecolor='k',
                       linewidth=1.5)

            # draw subproblem separator
            z = -w[0] / w[2] - w[1] / w[2] * r
            ax.plot(r, z, linewidth=2, color=self.colors[a], zorder=3)
            ax.plot(r, z, linewidth=2.75, color='k', zorder=2)

            # dress panel correctly
            ax.set_xlim(minx, maxx)
            ax.set_ylim(minx, maxx)
            ax.axis('off')

        # plot final panel with all data and separators
        ax4 = plt.subplot(gs[num_classes + 1], aspect='equal')
        self.plot_data(ax4)
        self.plot_all_separators(ax4)

        # dress panel
        ax4.set_xlim(minx, maxx)
        ax4.set_ylim(minx, maxx)
        ax4.axis('off')

        plt.show()
コード例 #20
0
ファイル: ova_illustrator.py プロジェクト: locussam/mlrefined
 def plot_data(self,ax):
     # initialize figure, plot data, and dress up panels with axes labels etc.
     num_classes = np.size(np.unique(self.y))
             
     # color current class
     for a in range(0,num_classes):
         t = np.argwhere(self.y == a+1)
         t = t[:,0]
         ax.scatter(self.x[t,0],self.x[t,1], s = 50,color = self.colors[a],edgecolor = 'k',linewidth = 1.5)
    def naive_fitting_demo(self, **kwargs):
        ##### setup figure to plot #####
        # initialize figure
        fig = plt.figure(figsize=(8, 4))
        artist = fig

        # create subplot with 2 panels
        gs = gridspec.GridSpec(2, 1, height_ratios=[1, 1])
        ax1 = plt.subplot(gs[0], aspect='equal')
        ax2 = plt.subplot(gs[1], aspect='equal')

        #### plot data in both panels ####
        self.scatter_pts(ax1)
        self.scatter_pts(ax2)

        #### fit line to data and plot ####
        # make plotting range
        xmin = copy.deepcopy(min(self.x))
        xmax = copy.deepcopy(max(self.x))
        xgap = (xmax - xmin) * 0.4
        xmin -= xgap
        xmax += xgap

        # produce fit
        x_fit = np.linspace(xmin, xmax, 300)
        w = self.w_hist[-1]
        y_fit = w[0] + x_fit * w[1]

        # plot linear fit
        ax2.plot(x_fit, y_fit, color='lime', linewidth=1.5)

        # plot sign version of linear fit
        f = np.sign(y_fit)
        bot_ind = np.argwhere(f == -1)
        bot_ind = [s[0] for s in bot_ind]
        bot_in = x_fit[bot_ind]
        bot_out = f[bot_ind]
        ax2.plot(bot_in, bot_out, color='r', linewidth=1.5, linestyle='--')

        top_ind = np.argwhere(f == +1)
        top_ind = [s[0] for s in top_ind]
        top_in = x_fit[top_ind]
        top_out = f[top_ind]
        ax2.plot(top_in, top_out, color='r', linewidth=1.5, linestyle='--')
コード例 #22
0
 def counting_cost(self,w):
     # compute predicted labels
     y_hat = np.sign(self.model(self.x,w))
             
     # compare to true labels
     ind = np.argwhere(self.y != y_hat)
     ind = [v[1] for v in ind]
    
     cost = np.sum(len(ind))
     return cost
コード例 #23
0
    def scatter_2d_classification_data(self, ax, scatter, **kwargs):
        ### from above
        ax.set_xlabel(r'$x_1$', fontsize=15)
        ax.set_ylabel(r'$x_2$', fontsize=15, rotation=0, labelpad=20)
        ax.xaxis.set_major_formatter(FormatStrFormatter('%.1f'))
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1f'))

        # plot points in 2d and 3d
        C = len(np.unique(self.y))
        if C == 2:
            ind0 = np.argwhere(self.y == +1)
            ind0 = [v[0] for v in ind0]
            ind1 = np.argwhere(self.y == -1)
            ind1 = [v[0] for v in ind1]

            if scatter == 'on':
                ax.scatter(self.x[ind0, 0],
                           self.x[ind0, 1],
                           s=55,
                           color=self.colors[0],
                           edgecolor='k')
                ax.scatter(self.x[ind1, 0],
                           self.x[ind1, 1],
                           s=55,
                           color=self.colors[1],
                           edgecolor='k')
            else:
                ax.scatter(self.x[ind0, 0],
                           self.x[ind0, 1],
                           s=55,
                           color=self.colors[0])  #, edgecolor = 'k')
                ax.scatter(self.x[ind1, 0],
                           self.x[ind1, 1],
                           s=55,
                           color=self.colors[1])  #, edgecolor = 'k')
        else:
            for c in range(C):
                ind0 = np.argwhere(self.y == c)
                ax.scatter(self.x[ind0, 0],
                           self.x[ind0, 1],
                           s=55,
                           color=self.colors[c],
                           edgecolor='k')
コード例 #24
0
    def surface_plot(self,g,ax,wmax,view):
        ##### Produce cost function surface #####
        r = np.linspace(-wmax,wmax,300)

        # create grid from plotting range
        w1_vals,w2_vals = np.meshgrid(r,r)
        w1_vals.shape = (len(r)**2,1)
        w2_vals.shape = (len(r)**2,1)
        w_ = np.concatenate((w1_vals,w2_vals),axis = 1)
        g_vals = []
        for i in range(len(r)**2):
            g_vals.append(g(w_[i,:]))
        g_vals = np.asarray(g_vals)
        
        w1_vals.shape = (np.size(r),np.size(r))
        w2_vals.shape = (np.size(r),np.size(r))
        
        ### is this a counting cost?  if so re-calculate ###
        levels = np.unique(g_vals)
        if np.size(levels) < 30:
            # plot each level of the counting cost
            levels = np.unique(g_vals)
            for u in levels:
                # make copy of cost and nan out all non level entries
                z = g_vals.copy()
                ind = np.argwhere(z != u)
                ind = [v[0] for v in ind]
                z[ind] = np.nan

                # plot the current level
                z.shape = (len(r),len(r)) 
                ax.plot_surface(w1_vals,w2_vals,z,alpha = 1,color = '#696969',zorder = 0,shade = True,linewidth=0)

        else: # smooth cost function, plot usual
            # reshape and plot the surface, as well as where the zero-plane is
            g_vals.shape = (np.size(r),np.size(r))

            # plot cost surface
            ax.plot_surface(w1_vals,w2_vals,g_vals,alpha = 1,color = 'w',rstride=25, cstride=25,linewidth=1,edgecolor = 'k',zorder = 2)  
        
        ### clean up panel ###
        ax.xaxis.pane.fill = False
        ax.yaxis.pane.fill = False
        ax.zaxis.pane.fill = False

        ax.xaxis.pane.set_edgecolor('white')
        ax.yaxis.pane.set_edgecolor('white')
        ax.zaxis.pane.set_edgecolor('white')

        ax.xaxis._axinfo["grid"]['color'] =  (1,1,1,0)
        ax.yaxis._axinfo["grid"]['color'] =  (1,1,1,0)
        ax.zaxis._axinfo["grid"]['color'] =  (1,1,1,0)

        ax.view_init(view[0],view[1])
    def load_data(self,csvname):
        data = np.loadtxt(csvname,delimiter = ',')
        self.data = data

        x = data[0:2,:]
        y = data[-1,:][np.newaxis,:]

        # remove points from one class for illustrative purposes
        ind0 = np.argwhere(y == -1)
        ind0 = [v[1] for v in ind0]
        ind1 = np.argwhere(y == +1)
        ind1 = [v[1] for v in ind1]

        ind0 = ind0[-5:]
        inds = ind0 + ind1
        
        x = x[:,inds]
        y = y[:,inds]
        
        special_class = -1
        return x,y,special_class
コード例 #26
0
    def pred(self, xt, x1, ykdt, params):

        kern_params, wnoise, mean_params = self.unpack_params(params,
                                                              fudge=self.fudge)
        k, d, t = ykdt.shape
        if self.mean:
            mu = self.mean(self.xt, params)[None]  # D x T ### TO BE CHANGED
            yc = (ykdt - mu).reshape([self.k, -1])
        else:
            yc = ykdt.reshape([k, -1])

        KXX = self.build_Kxx(xt, xt, params, prior=True)

        # select points to condition on
        val_inds = np.argwhere(np.isnan(yc[0]) == False).squeeze()
        nval_inds = np.argwhere(np.isnan(yc[0]) == True).squeeze()
        KXX = KXX[:, val_inds]
        KXX = KXX[val_inds]
        yc = yc[:, val_inds]

        L = np.linalg.cholesky(KXX)
        iL = inv(L)
        Kinv = iL.T @ iL

        KXx = self.build_Kxx(xt, x1, params, prior=False)
        t0 = xt.shape[0]
        t1 = x1.shape[0]
        KXx = KXx.reshape([t0, d, t1, d]).reshape([t0 * d, -1])
        noise = np.kron(np.diag(wnoise), np.eye(t0))
        noise[nval_inds, nval_inds] = 0
        KXx[:t0 * d, :t0 * d] += noise
        KXx = KXx.reshape([t0, d, t1, d]).reshape([d * t0, -1])
        KXx = KXx[val_inds]

        Kxx = self.build_Kxx(x1, x1, params, prior=True)
        mu_pred = KXx.T.dot(Kinv).dot(yc.T).T
        cov_pred = Kxx - KXx.T.dot(Kinv).dot(KXx)
        mu_pred = mu_pred.reshape([k, d, -1])
        return mu_pred, np.sqrt(
            np.diag(cov_pred).reshape([d, -1]) + self.fudge)
コード例 #27
0
def inds_to_effect_change(leverage, desired_delta):
    # Argsort sorts low to high.
    # We are removing points, so multiply by -1.
    sort_inds = np.argsort(leverage * np.sign(desired_delta))
    deltas = -1 * np.cumsum(leverage[sort_inds])
    change_sign_inds = np.argwhere(
        np.sign(desired_delta) * (desired_delta - deltas) <= 0.)
    if len(change_sign_inds) > 0:
        first_ind_change_sign = np.min(change_sign_inds)
        remove_inds = sort_inds[:(first_ind_change_sign + 1)]
        return remove_inds
    else:
        return None
コード例 #28
0
def generate_mixture_data(num_obs, true_centroids, true_probs, x_covs):
    true_z = np.random.multinomial(1, true_probs, num_obs)
    true_z_ind = np.full(num_obs, -1)
    for row in np.argwhere(true_z):
        true_z_ind[row[0]] = row[1]

    x = np.array([
        np.random.multivariate_normal(
            mean=np.squeeze(true_centroids[true_z_ind[n], :]),
            cov=np.squeeze(x_covs[n, :])) for n in range(num_obs)
    ])

    return x, true_z, true_z_ind
コード例 #29
0
    def plot_subproblem_fits(self,weights,**kwargs):
        C = len(np.unique(self.y))
        
        # construct figure
        fig = plt.figure(figsize=(9,2.5))

        # create subplot with 2 panels
        gs = gridspec.GridSpec(1, C) 
        
        # scatter points
        for c in range(C):
            # create subproblem data
            y_temp = copy.deepcopy(self.y)
            ind = np.argwhere(y_temp.astype(int) == (c))
            ind = ind[:,0]
            ind2 = np.argwhere(y_temp.astype(int) != (c))
            ind2 = ind2[:,0]
            y_temp[ind] = 1
            y_temp[ind2] = -1
        
            # create new axis to plot
            ax = plt.subplot(gs[c])
            xmin,xmax = self.scatter_pts(ax,self.x,y_temp)
            
            # create fit
            s = np.linspace(xmin,xmax,300)[np.newaxis,:]
            transformer = lambda a: a
            if 'transformer' in kwargs:
                transformer = kwargs['transformer']
            a = self.model(transformer(s),weights[:,c])

            # plot counting cost 
            t = np.sign(a).flatten() 
            ax.plot(s.flatten(),t,linewidth = 4,color = 'b',zorder = 2)
            
            # pretty up panel
            title = 'class ' + str(c+1) + ' versus all'
            ax.set_title(title,fontsize = 14)
コード例 #30
0
    def confusion_matrix(self,w):
        # compute predicted labels
        y_hat = np.sign(self.model(self.x,w))
        
        # determine indices of real and predicted label values
        ind1 = np.argwhere(self.y == +1)
        ind1 = [v[1] for v in ind1]

        ind2 = np.argwhere(self.y == -1)
        ind2 = [v[1] for v in ind2]
        
        ind3 = np.argwhere(y_hat == +1)
        ind3 = [v[1] for v in ind3]

        ind4 = np.argwhere(y_hat == -1)
        ind4 = [v[1] for v in ind4]    
        
        # compute elements of confusion matrix
        A = len(list(set.intersection(*[set(ind1), set(ind3)])))
        B = len(list(set.intersection(*[set(ind1), set(ind4)])))
        C = len(list(set.intersection(*[set(ind2), set(ind3)])))
        D = len(list(set.intersection(*[set(ind2), set(ind4)])))
        return A,B,C,D