コード例 #1
0
    def forward_pass(self, inputs, param_vector):

        #n = mesh_traversal.get_neighs_sq(inputs)
        #result = np.array(n)
        #result = np.moveaxis(result, 0, 2)

        # if inputs.shape[2] == 576:

        new_shape = inputs.shape[:2]
        for i in [0]:
            pool_width = self.pool_shape[i]
            img_width = inputs.shape[i + 2]
            new_dim = int((np.sqrt(img_width) / np.sqrt(pool_width)))
            new_shape += (new_dim * new_dim, )

        result = []
        for i in range(new_dim):
            for j in range(new_dim):
                x = (3 * j + 25) + 24 * 3 * i
                n = mesh_traversal.get_neighs_sq2(adj_mtx, x)
                a = inputs[:, :, n[0]]
                b = inputs[:, :, n[1]]
                c = inputs[:, :, n[2]]
                d = inputs[:, :, n[3]]
                e = inputs[:, :, n[4]]
                f = inputs[:, :, n[5]]
                g = inputs[:, :, n[6]]
                h = inputs[:, :, n[7]]
                temp = np.stack((a, b, c, d, e, f, g, h))
                temp = np.amax(temp, axis=0)
                result.append(temp)
        result = np.stack(result)
        result = np.moveaxis(result, 0, 2)

        return result
コード例 #2
0
def as_strided_dyn(b, patch=5, stride=1):
    """
    Strides the input data as preprocessing for convolution.
    for efficient implementation
    :param b: array to be strided
    :param patch: patch is the length of one side of the patch. Must be smaller than smallest dimension of b
    :param stride: desired stride between patches
    :return: strided form of input data, prepared for convolution
    """
    dims = b.shape
    ex_ct = dims[0]
    if dims[3] != dims[4]:
        exit(-1)
    else:
        out = []
        for k in range(ex_ct):
            arr = []
            for i in range(0, dims[3] - patch + 1, stride):
                arr2 = []
                for j in range(0, dims[4] - patch + 1, stride):
                    if i + patch <= dims[3] and j + patch <= dims[4]:
                        arr2.append([b[k, :, :, i:i + patch, j:j + patch]])
                arr.append([arr2])
            out.append([arr])

    out = np.array(out)

    out = out[:, :, :, 0, :, 0, 0, :, :, :]
    out = np.moveaxis(out, 4, 2)

    return out
コード例 #3
0
def convolve_tensor(a, b):
    """
    Convolves two tensorized arrays, most efficient convolution method.
    :param a: first array to be convoluted
    :param b: second array to be convoluted
    :return: convolved array
    """
    b = as_strided_seq(b, 5, 1)
    b = np.moveaxis(b, [0, 1, 2, 3, 4, 5], [0, 3, 4, 5, 1, 2])
    b = np.moveaxis(b, 5, 1)
    try:
        out = npo.einsum(a, [12, 1, 10, 11], b, [4, 12, 10, 11, 8, 9])
        out = np.swapaxes(out, 0, 1)
    except:
        a = a._value
        out = npo.einsum(a, [12, 1, 10, 11], b, [4, 12, 10, 11, 8, 9])
        out = np.swapaxes(out, 0, 1)
    return out
コード例 #4
0
def anp_partial_trace(rho, dims, axis=0):
    """
    Takes partial trace over the subsystem defined by 'axis'
    rho: a matrix
    dims: a list containing the dimension of each subsystem
    axis: the index of the subsytem to be traced out
    (We assume that each subsystem is square)
    """
    dims_ = np.array(dims)
    reshaped_rho = np.reshape(rho, np.concatenate((dims_, dims_), axis=None))

    reshaped_rho = np.moveaxis(reshaped_rho, axis, -1)
    reshaped_rho = np.moveaxis(reshaped_rho, len(dims) + axis - 1, -1)

    assert reshaped_rho.shape[-1] == reshaped_rho.shape[-2]
    traced_out_rho = sum(
        [reshaped_rho[:, :, i, i] for i in range(reshaped_rho.shape[-1])])

    dims_untraced = np.delete(dims_, axis)
    rho_dim = np.prod(dims_untraced)
    return traced_out_rho.reshape([rho_dim, rho_dim])
コード例 #5
0
def rgb_gauss_random_samples(N,
                             mean_or_means=None,
                             cov_or_covs=None,
                             im_sz=None):
    means, covs, im_sz = _handle_kwargs(mean_or_means, cov_or_covs, im_sz)

    samples_by_channel = np.asarray([
        np.random.multivariate_normal(mean, cov, N).T
        for mean, cov in zip(means, covs)
    ])

    samples_batch_minor = np.moveaxis(samples_by_channel, [0, 1], [1, 0])

    return samples_batch_minor
コード例 #6
0
ファイル: GraphHMM.py プロジェクト: sailendramishra/GraphLSSM
    def transitionProb(self, child):
        parents, parent_order = self.getParents(child, get_order=True)
        ndim = len(parents) + 1
        pi = np.copy(self.pis[ndim])

        # If we know the latent state for child, then ensure that we
        # transition there.  Also make sure we're only using the possible
        # parent latent states!!!!
        modified = False
        for parent, order in zip(parents, parent_order):
            if (int(parent) in self.possible_latent_states):
                parent_states = self.possible_latent_states[int(parent)]
                impossible_parent_axes = np.setdiff1d(
                    np.arange(pi.shape[order]), parent_states)
                index = [slice(0, s) for s in pi.shape]
                index[order] = impossible_parent_axes
                pi[tuple(index)] = np.NINF
                modified = True

        if (int(child) in self.possible_latent_states):
            child_states = self.possible_latent_states[int(child)]
            impossible_child_axes = np.setdiff1d(np.arange(pi.shape[-1]),
                                                 child_states)
            pi[..., impossible_child_axes] = np.NINF
            modified = True

        if (modified == True):
            with np.errstate(invalid='ignore'):
                pi[..., :] -= logsumexp(pi, axis=-1)[..., None]

        # In case entire rows summed to -inf
        pi[np.isnan(pi)] = np.NINF

        # Reshape pi's axes to match parent order
        assert len(parents) + 1 == pi.ndim
        assert parent_order.shape[0] == parents.shape[0]
        pi = np.moveaxis(pi, np.arange(ndim),
                         np.hstack((parent_order, ndim - 1)))
        return pi
コード例 #7
0
ファイル: GraphHMM.py プロジェクト: sailendramishra/GraphLSSM
    def transitionProb(self, child, is_partial_graph_index=False):
        parents, parent_order = self.getFullParents(
            child,
            get_order=True,
            is_partial_graph_index=is_partial_graph_index,
            return_partial_graph_index=True)
        child_full = self.partialGraphIndexToFullGraphIndex(
            child) if is_partial_graph_index == True else child
        ndim = len(parents) + 1
        group = self.node_groups[int(child_full)]
        shape = []
        for p, _ in sorted(zip(parents, parent_order), key=lambda po: po[1]):
            full_p = int(self.partialGraphIndexToFullGraphIndex(p))
            shape.append(self.getNodeDim(full_p))
        shape.append(self.getNodeDim(int(child_full)))
        shape = tuple(shape)

        pi = np.copy(self.pis[group][shape])
        # Reshape pi's axes to match parent order
        assert len(parents) + 1 == pi.ndim
        assert parent_order.shape[0] == parents.shape[0]

        # Sort the parent dimensions by parent order
        pi = np.moveaxis(pi, np.arange(ndim),
                         np.hstack((parent_order, ndim - 1)))

        # If we know the latent state for child, then ensure that we
        # transition there. This is intervention!
        modified = False
        for parent, order in zip(parents, parent_order):
            parent_full = self.partialGraphIndexToFullGraphIndex(parent)
            if (int(parent_full) in self.possible_latent_states):
                parent_states = self.possible_latent_states[int(parent_full)]
                impossible_parent_axes = np.setdiff1d(
                    np.arange(pi.shape[order]), parent_states)
                index = [slice(0, s) for s in pi.shape]
                index[order] = impossible_parent_axes
                pi[tuple(index)] = np.NINF
                modified = True

        if (int(child_full) in self.possible_latent_states):
            states = self.possible_latent_states[int(child_full)]
            impossible_axes = np.setdiff1d(np.arange(pi.shape[-1]), states)
            pi[..., impossible_axes] = np.NINF
            modified = True

        # In case entire rows summed to -inf
        pi[np.isnan(pi)] = np.NINF

        # Check if there are nodes in [ child, *parents ] that are in the fbs.
        # If there are, then move their axes
        fbsOffset = lambda x: self.fbsIndex(
            x, is_partial_graph_index=True, within_graph=True) + 1
        fbs_indices = [
            fbsOffset(parent) for parent in parents
            if self.inFeedbackSet(parent, is_partial_graph_index=True)
        ]

        if (self.inFeedbackSet(child,
                               is_partial_graph_index=is_partial_graph_index)):
            fbs_indices.append(
                self.fbsIndex(child,
                              is_partial_graph_index=is_partial_graph_index,
                              within_graph=True) + 1)

        if (len(fbs_indices) > 0):
            expand_by = max(fbs_indices)
            for _ in range(expand_by):
                pi = pi[..., None]

            # If there are parents in the fbs, move them to the appropriate axes
            for i, parent in enumerate(parents):
                if (self.inFeedbackSet(parent, is_partial_graph_index=True)):
                    pi = np.swapaxes(pi, i, fbsOffset(parent) + ndim - 1)

            if (self.inFeedbackSet(
                    child, is_partial_graph_index=is_partial_graph_index)):
                # If the child is in the fbs, then move it to the appropriate axis
                pi = np.swapaxes(pi, ndim - 1, fbsOffset(child) + ndim - 1)

            return fbsData(pi, ndim)
        return fbsData(pi, -1)
コード例 #8
0
def multiCamCalib(umeas, xworld, cameraMats, boardRotMats, boardTransVecs,
                  planeData, cameraData):
    """Compute the calibrated camera matrix, rotation matrix, and translation vector for each camera.

	Inputs
	-------------------------------------------
	umeas              2 x nX*nY*nplanes x ncams array of image points in each camera
	xworld             3 x nX*nY*nplanes of all world points
	cameraMats         3 x 3 x ncams that holds all camera calibration matrices; first estimated in single camera calibration
	boardRotMats       3 x 3*nplanes x ncams for each board in each camera; from single camera calibration.
	boardTransVecs     3 x nplanes x ncams for each board in each camera; from single camera calibration
	planeData          struct of image related parameters
	cameraData         struct of camera related parameters

	Returns
	-------------------------------------------
	cameraMats         3 x 3 x ncams; final estimate of the camera matrices
	rotationMatsCam    3 x 3 x ncams; final estimate of the camera rotation matrices
	transVecsCam       3 x ncams; final estimate of the camera translational vectors
	"""

    # loop over all camera pairs
    # call kabsch on each pair
    # store rotation matrices and translational vectors
    # Calculate terms in sum, add to running sum

    log.info("Multiple Camera Calibrations")

    # Extract dimensional data.
    ncams = cameraData.ncams
    nplanes = planeData.ncalplanes

    # Storage variables.
    R_pair = np.zeros([3, 3, ncams, ncams])
    t_pair = np.zeros([3, ncams, ncams])

    xworld = np.transpose(xworld)

    for i in range(0, ncams):
        for j in range(0, ncams):
            if i == j:
                t_pair[:, i, j] = np.zeros(3)
                R_pair[:, :, i, j] = np.eye(3, 3)
                continue
            log.VLOG(2, 'Correlating cameras (%d, %d)' % (i, j))

            # Compute world coordinates used by kabsch.
            Ri = np.concatenate(np.moveaxis(boardRotMats[:, :, :, i], 2, 0),
                                axis=0)
            ti = boardTransVecs[:, :, i].reshape((-1, 1), order='F')
            Rj = np.concatenate(np.moveaxis(boardRotMats[:, :, :, j], 2, 0),
                                axis=0)
            tj = boardTransVecs[:, :, j].reshape((-1, 1), order='F')

            # Compute world coordinates and use Kabsch
            Xi = np.matmul(Ri, xworld) + ti
            Xj = np.matmul(Rj, xworld) + tj
            Xi = Xi.reshape((3, -1), order='F')
            Xj = Xj.reshape((3, -1), order='F')
            R_pair_ij, t_pair_ij = kabsch(Xi, Xj)
            R_pair[:, :, i, j] = R_pair_ij
            t_pair[:, i, j] = t_pair_ij
            log.VLOG(
                3, 'Pairwise rotation matrix R(%d, %d) = \n %s' %
                (i, j, R_pair_ij))
            log.VLOG(
                3, 'Pairwise translation vector R(%d, %d) = %s' %
                (i, j, t_pair_ij))

    log.info("Kabsch complete. Now minimizing...")

    ##################### Solve minimization problems for Rotation and Translation Estimates ####################

    # Solve linear least square problem to minimize translation vectors of all cameras.
    # This array is contructed here per pair of cameras and later resrtcutured to set up the linear minimization problem
    # Ax - b.
    log.info(
        "Minimizing for first estimates of translation vectors per camera.")
    A = np.zeros((3, 3 * ncams, ncams, ncams))
    b = np.zeros((3, ncams, ncams))

    # Construct expanded matrix expression for minimization.
    for i in range(0, ncams):
        for j in range(0, ncams):
            if i == j:
                continue
            # Rij = R_pair[:, :, min(i, j), max(i, j)]
            # tij = t_pair[:, min(i, j), max(i, j)]
            Rij = R_pair[:, :, i, j]
            tij = t_pair[:, i, j]

            A[:, 3 * i:3 * (i + 1), i, j] = -Rij
            A[:, 3 * j:3 * (j + 1), i, j] = np.eye(3)

            b[:, i, j] = tij

    A = np.concatenate(np.concatenate(np.moveaxis(A, (2, 3), (0, 1)), axis=0),
                       axis=0)
    b = b.reshape((-1, 1), order='F')

    log.VLOG(4, 'Minimization matrix A for translation vectors \n %s' % A)
    log.VLOG(4, 'Minimization vector b for translation vectors \n %s' % b)

    # We want to constrain only the translational vector for the first camera
    # Create a constraint array with a 3x3 identity matrix in the top left
    constraint_array = np.zeros([3 * ncams, 3 * ncams])
    constraint_array[0:3, 0:3] = np.eye(3)

    # Solve the minimization, requiring the first translational vector to be the zero vector

    # Initialize camera positions assuming the first camera is at the origin and the cameras
    # are uniformly spaced by horizontal a displacement vector and a vertical vector such as in
    # a rectangular grid of the dimensions to be specified.

    def trans_cost(x):
        return np.linalg.norm(np.matmul(A, np.array(x)) - b)

    # trans_cost_deriv = autograd.grad(lambda *args: trans_cost(np.transpose(np.array(args))))

    # Construct the problem.
    x = cp.Variable((3 * ncams, 1))
    objective = cp.Minimize(cp.sum_squares(A @ x - b))
    constraints = [constraint_array @ x == np.zeros((3 * ncams, 1))]
    prob = cp.Problem(objective, constraints)

    print("Optimal value", prob.solve())

    if prob.status == cp.OPTIMAL:
        log.info("Minimization for Translation Vectors Succeeded!")
        print('Optimized translation error: ', trans_cost(x.value))
        t_vals = x.value
    else:
        log.error('Minimization Failed for Translation Vectors!')
        return
    # Translation vectors stored as columns.
    t_vals = np.transpose(t_vals.reshape((-1, 3)))

    for i in range(t_vals.shape[1]):
        log.VLOG(3, 't(%d) = \n %s' % (i, t_vals[:, i]))

    # log.info('Minimizing for translation vectors of cameras: %s', res.message)

    # Solve linear least square problem to minimize rotation matrices.
    log.info("Minimizing for first estimates of rotation matrices per camera.")
    A = np.zeros((9, 9 * ncams, ncams, ncams))

    # Construct expanded matrix expression for minimization.
    for i in range(0, ncams):
        for j in range(0, ncams):
            if i == j:
                continue
            Rij = R_pair[:, :, i, j]

            A[:, 9 * i:9 * (i + 1), i, j] = np.eye(9)

            A[:, 9 * j:9 * (j + 1), i, j] = -np.kron(np.eye(3), Rij)

    A = np.concatenate(np.concatenate(np.moveaxis(A, (2, 3), (0, 1)), axis=0),
                       axis=0)
    b = np.zeros(A.shape[0])

    log.VLOG(4, 'Minimization matrix A for rotation matrices \n %s' % A)
    log.VLOG(4, 'Minimization vector b for rotation matrices \n %s' % b)

    # We want to constrain only the rotation matrix for the first camera
    # Create a constraint array with a 9x9 identity matrix in the top left
    constraint_array = np.zeros([9 * ncams, 9 * ncams])
    constraint_array[0:9, 0:9] = np.eye(9)
    bound = np.zeros(9 * ncams)
    bound[0] = 1
    bound[4] = 1
    bound[8] = 1

    # Initialize all rotation matrices to identities assuming no camera is rotated with respect to another.
    x0 = np.zeros(9 * ncams)
    for i in range(ncams):
        x0[9 * i] = 1
        x0[9 * i + 4] = 1
        x0[9 * i + 8] = 1

    # Solve the minimization, requiring the first rotation matrix to be the identity matrix

    # Construct the problem.
    x = cp.Variable(9 * ncams)
    objective = cp.Minimize(cp.sum_squares(A @ x - b))
    constraints = [constraint_array @ x == bound]
    prob = cp.Problem(objective, constraints)

    print("Optimal value", prob.solve())

    print('Minimization status: ', prob.status)
    if prob.status == cp.OPTIMAL:
        log.info("Minimization for Rotational Matrices Succeeded!")
        R_vals = x.value
    else:
        log.error('Minimization Failed for Rotational Matrices!')
        return

    # Rotation matrices stored rows first
    R_vals = np.moveaxis(R_vals.reshape(-1, 3, 3), 0, 2)

    # Fit rotation matrices from optimized result.
    for i in range(ncams):
        R_vals[:, :, i] = fitRotMat(R_vals[:, :, i])
        log.VLOG(3, 'R(%d) = \n %s' % (i, R_vals[:, :, i]))

    log.info(
        "Finding average rotation matrices and translational vectors from single camera calibration."
    )

    # Obtain average Rs and ts per images over cameras.
    R_images = np.sum(boardRotMats, axis=3) / ncams
    t_images = np.sum(boardTransVecs, axis=2) / ncams

    for i in range(R_images.shape[2]):
        log.VLOG(
            3, 'Average rotation matrix for Image %d = \n %s' %
            (i, R_images[:, :, i]))
    for i in range(t_images.shape[1]):
        log.VLOG(
            3, 'Average translation vector for Image %d = \n %s' %
            (i, t_images[:, i]))

    ####################### Final Minimization to Yield All Parameters######################

    # K_c, R_c, R_n, t_c, t_n.
    # cameraMats, R_vals, t_vals = interpretResults('../../../FILMopenfv-samples/sample-data/pinhole_calibration_data/calibration_results/results_000001438992543.txt')

    # Pack all matrices into a very tall column vector for minimization
    min_vec_ini = np.append(
        cameraMats.reshape((-1)),
        np.append(
            R_vals.reshape((-1)),
            np.append(R_images.reshape((-1)),
                      np.append(t_vals.reshape((-1)), t_images.reshape(
                          (-1))))))

    planeVecs = {}

    # Set up objective function and Jacobian sparsity structure for minimization.
    def reproj_obj_lsq(min_vec):
        # Compute the reprojection error at each intersection per each camera per each image.

        cameraMats, rotMatsCam, rotMatsBoard, transVecsCam, transVecsBoard = unpack_reproj_min_vector(
            cameraData, planeData, min_vec)

        err = np.zeros(ncams * nplanes * nX * nY)

        # Set pixel normalization factor to 1 here.
        normal_factor = 1

        for c in range(ncams):
            for n in range(nplanes):
                for i in range(nX):
                    for j in range(nY):
                        err[c * nplanes * nX * nY + n * nX * nY + i * nY + j] = \
                         reproj_error(normal_factor, umeas[:, n * nX * nY + i * nY + j, c],
                                      xworld[:, nX * nY * n + i * nY + j], cameraMats[:, :, c],
                                      rotMatsCam[:, :, c], rotMatsBoard[:, :, n], transVecsCam[:, c],
                                      transVecsBoard[:, n])
        return err

    def bundle_adjustment_sparsity():
        m = ncams * nplanes * nX * nY
        n = min_vec_ini.shape[0]
        A = lil_matrix((m, n), dtype=int)

        num_nonzeros = np.sum([
            np.prod(x.shape[:-1])
            for x in [cameraMats, R_vals, t_vals, R_images, t_images]
        ])
        for c in range(ncams):
            # make boolean arrays for camera-indexed arrays
            cams = np.zeros(cameraMats.shape)
            cams[:, :, c] = np.ones(cameraMats.shape[:-1])
            rots = np.zeros(R_vals.shape)
            rots[:, :, c] = np.ones(R_vals.shape[:-1])
            ts = np.zeros(t_vals.shape)
            ts[:, c] = np.ones(t_vals.shape[:-1])

            cams = cams.reshape(-1)
            rots = rots.reshape(-1)
            ts = ts.reshape(-1)

            for n in range(nplanes):
                # make boolean arrays for plane-indexed arrays
                if n not in planeVecs:
                    rimgs = np.zeros(R_images.shape)
                    rimgs[:, :, n] = np.ones(R_images.shape[:-1])
                    timgs = np.zeros(t_images.shape)
                    timgs[:, n] = np.ones(t_images.shape[:-1])
                    planeVecs[n] = rimgs, timgs
                else:
                    rimgs, timgs = planeVecs[n]

                rimgs = rimgs.reshape(-1)
                timgs = timgs.reshape(-1)

                # create boolean array with changed values for jacobian
                x0 = np.append(
                    cams.reshape((-1)),
                    np.append(
                        rots.reshape((-1)),
                        np.append(
                            rimgs.reshape((-1)),
                            np.append(ts.reshape((-1)), timgs.reshape((-1))))))

                # set changing values in jacobian
                A[nY * nX * (n + nplanes * c):nY * nX * (n + 1 + nplanes * c),
                  x0.nonzero()] = np.ones((nY * nX, num_nonzeros))

        return A

    A = bundle_adjustment_sparsity()
    reproj_res = scipy.optimize.least_squares(reproj_obj_lsq,
                                              min_vec_ini,
                                              jac_sparsity=A,
                                              verbose=2,
                                              x_scale='jac',
                                              ftol=1e-2)

    if reproj_res.success:
        finError = reproj_min_func(planeData, cameraData, umeas, xworld,
                                   reproj_res.x)
        log.info("Final error: {}".format(finError))
        log.info("Reprojection Minimization Succeeded!")
        cameraMats, rotationMatsCam, rotationMatsBoard, transVecsCam, transVecsBoard = unpack_reproj_min_vector(
            cameraData, planeData, reproj_res.x)
    else:
        log.error('Reprojection Minimization Failed!')
        return

    return cameraMats, rotationMatsCam, rotationMatsBoard, transVecsCam, transVecsBoard, finError
コード例 #9
0
 def to_batch_minor(self, inputs):
     """Reorder [batch, channels, y, x]
        to      [y, x, channels, batch]
     """
     return np.moveaxis(inputs, [0, 1, 2, 3], [3, 2, 0, 1])
コード例 #10
0
 def to_batch_major(self, inputs):
     """Reorder [y, x, channels, batch]
        to      [batch, channels, y, x]
     """
     return np.moveaxis(inputs, [0, 1, 2, 3], [2, 3, 1, 0])