コード例 #1
0
def G4(positions, cell, numbers, elements, params):
    cutoff_radius = params['cutoff_radius']
    eta = params['eta']
    zeta = params['zeta']
    lbda = params['lbda']
    cos, Rij, Rik, Rjk, i, jk = atomsAngle(positions, cell, cutoff_radius)
    g4 = (1 + lbda * cos)**zeta * np.exp(
        -eta * (Rij**2 + Rik**2 + Rjk**2) / cutoff_radius**2)
    g4 = g4 * cutoff(cutoff_radius, Rij) * cutoff(cutoff_radius, Rik) * cutoff(
        cutoff_radius, Rjk)
    g4 *= 2**(1 - zeta)
    atoms_mask = np.arange(len(positions))[:, None] == i[None, :]

    # the shape of g4 will become (#atoms, len(g4)) and multiply atoms_mask to get the corresponding center atom's fingerprints
    g4 = np.repeat(g4[None, :], len(positions), axis=0)
    g4 *= atoms_mask

    index = np.indices((len(elements), len(elements))).reshape(2, -1)
    mask = index[1] >= index[0]
    index = index[:, mask].T
    pairs = np.repeat(np.sort(numbers[jk])[:, None], len(index), axis=1)
    elements = np.sort(elements)[index]

    pairs_mask = np.sum(pairs == elements, axis=2)
    pairs_mask = np.where(pairs_mask == 2, 1, 0)

    g4 = np.dot(g4, pairs_mask)

    return g4
コード例 #2
0
    def estimates(self, log_p, ref):
        n = ref.shape[0]
        d = ref.shape[1]

        if n % 2 == 1:
            # make it even by removing the last row
            ref = np.delete(ref, -1, axis=0)
            n = n - 1
        refOdd = ref[::2, :]
        refEven = ref[1::2, :]
        estimates = np.zeros((self.n_estimates(n)))
        dlog_px = log_p.grad_log(ref)
        Kxx = self.kernel.eval(ref, ref)
        ddk = self.kernel.gradXY_sum(ref, ref)

        mat2 = np.zeros((n, n))
        mat3 = np.zeros((n, n))

        mat1 = (np.matmul(dlog_px, dlog_px.T) * Kxx.T)
        ## TODO: Eigensum
        for k in range(d):
            dk_dX = self.kernel.gradX_Y(ref, ref, k)
            dk_dY = self.kernel.gradY_X(ref, ref, k)
            mat2 = mat2 + (np.repeat(dlog_px[:, k, np.newaxis], n, axis=1) *
                           dk_dY)
            mat3 = mat3 + (np.repeat(dlog_px[:, k, np.newaxis], n, axis=1) *
                           dk_dX.T).T
        mat4 = mat1 + mat2 + mat3 + ddk
        e = 2 * np.array(range(self.n_estimates(n)))
        o = 2 * np.array(range(self.n_estimates(n))) + 1
        return mat4[e, o]
コード例 #3
0
def periodic_kernel(x, xstar, hyp):
    """
    Implements the periodic kernel function for Gaussian Process

    x: input data with shape (N,d)
    xstar: inpt data with data (Nstar,d)
    hyp: (log(sigma_f),log(l1),log(l2),...,log(period)) with shape (d+2,)
    
    returns:
        a covariance matrix with shape (N,Nstar)
    """
    sigma_f = np.exp(hyp[0])
    N = x.shape[0]
    Nstar = xstar.shape[0]
    l = np.exp(hyp[1:-1])  #shape (d,)
    l = np.repeat(np.repeat(l[np.newaxis, :], Nstar, axis=0)[np.newaxis, :],
                  N,
                  axis=0)  #shape (N,Nstar,d)
    period = np.exp(hyp[-1])

    diff = np.sin(
        np.pi * np.abs(np.expand_dims(x, 1) - np.expand_dims(xstar, 0)) /
        period) / l  #result of shape (N,Nstar,d)
    K = sigma_f * np.exp(-2 *
                         (diff**2).sum(axis=2))  #should be of shape (N,Nstar)

    return K
コード例 #4
0
def index2d(channel, stride, kshape, xshape):
    k_h, k_w = kshape
    x_h, x_w = xshape

    c_idx = np.repeat(np.arange(channel), k_h * k_w)
    c_idx = c_idx.reshape(-1, 1)

    res_h = int((x_h - k_h) / stride) + 1
    res_w = int((x_w - k_w) / stride) + 1

    size = channel * k_h * k_w

    h_idx = np.tile(np.repeat(stride * np.arange(res_h), res_w), size)
    h_idx = h_idx.reshape(size, -1)
    h_off = np.tile(np.repeat(np.arange(k_h), k_w), channel)
    h_off = h_off.reshape(size, -1)
    h_idx = h_idx + h_off

    w_idx = np.tile(np.tile(stride * np.arange(res_w), res_h), size)
    w_idx = w_idx.reshape(size, -1)
    w_off = np.tile(np.arange(k_w), channel * k_h)
    w_off = w_off.reshape(size, -1)
    w_idx = w_idx + w_off

    return c_idx, h_idx, w_idx
コード例 #5
0
ファイル: lstm.py プロジェクト: tnakaicode/PlotGallery
def lstm_predict(params, inputs):
    def update_lstm(input, hiddens, cells):
        change = np.tanh(concat_and_multiply(params['change'], input, hiddens))
        forget = sigmoid(concat_and_multiply(params['forget'], input, hiddens))
        ingate = sigmoid(concat_and_multiply(params['ingate'], input, hiddens))
        outgate = sigmoid(
            concat_and_multiply(params['outgate'], input, hiddens))
        cells = cells * forget + ingate * change
        hiddens = outgate * np.tanh(cells)
        return hiddens, cells

    def hiddens_to_output_probs(hiddens):
        output = concat_and_multiply(params['predict'], hiddens)
        # Normalize log-probs.
        return output - logsumexp(output, axis=1, keepdims=True)

    num_sequences = inputs.shape[1]
    hiddens = np.repeat(params['init hiddens'], num_sequences, axis=0)
    cells = np.repeat(params['init cells'], num_sequences, axis=0)

    output = [hiddens_to_output_probs(hiddens)]
    for input in inputs:  # Iterate over time steps.
        hiddens, cells = update_lstm(input, hiddens, cells)
        output.append(hiddens_to_output_probs(hiddens))
    return output
コード例 #6
0
def Bwham_NLL_eq(fi,Ni,Ml,Wil):
    """
    Args:
        fi: shape (S,)

        Ni: Number of data counts in simulation i (S,)

        Ml: Number of data in from simulation i=1,...,S in bin l (M,)

        Wil: 0.5*k*beta*(n-nstar)**2 (S,M)

    Returns:
        the value of the negative likelihood function
    """
    S = Wil.shape[0]
    M = Wil.shape[1]
    
    fi = fi - fi[-1]
    first_term = -(Ni*fi).sum()
    
    log_pl = nup.log(Ml) - \
            alogsumexp(nup.repeat(fi[:,nup.newaxis],M,axis=1)-Wil,b=nup.repeat(Ni[:,nup.newaxis],M,axis=1),axis=0)

    second_term = (Ml * log_pl).sum(axis=0)


    return first_term - second_term
コード例 #7
0
ファイル: lqr_policy.py プロジェクト: yitongx/Baconian-public
    def differentiate(self):

        "get gradient values using finite difference"

        C = np.repeat(np.expand_dims(self.cost_fn.C, axis=0), [self.T, 1, 1])
        F = np.repeat(np.expand_dims(self.dyn_model.F, axis=0), [self.T, 1, 1])
        c = np.repeat(np.expand_dims(self.cost_fn.c, axis=0), (self.T, 1))
        f = np.repeat(np.expand_dims(self.dyn_model.f, axis=0), (self.T, 1))
        return C, F, c, f
コード例 #8
0
ファイル: gp.py プロジェクト: w1368027790/pilco-learner
    def gp0(self, m, s):
        """
        Compute joint predictions for MGP with uncertain inputs.
        """
        assert hasattr(self, "hyp")
        if not hasattr(self, "K"):
            self.cache()

        x = np.atleast_2d(self.inputs)
        y = np.atleast_2d(self.targets)
        n, D = x.shape
        n, E = y.shape

        X = self.hyp
        iK = self.iK
        beta = self.alpha

        m = np.atleast_2d(m)
        inp = x - m

        # Compute the predicted mean and IO covariance.
        iL = np.stack([np.diag(exp(-X[i, :D])) for i in range(E)])
        iN = np.matmul(inp, iL)
        B = iL @ s @ iL + np.eye(D)
        t = np.stack([solve(B[i].T, iN[i].T).T for i in range(E)])
        q = exp(-np.sum(iN * t, 2) / 2)
        qb = q * beta.T
        tiL = np.matmul(t, iL)
        c = exp(2 * X[:, D]) / sqrt(det(B))

        M = np.sum(qb, 1) * c
        V = (np.transpose(tiL, [0, 2, 1]) @ np.expand_dims(qb, 2)).reshape(
            E, D).T * c
        k = 2 * X[:, D].reshape(E, 1) - np.sum(iN**2, 2) / 2

        # Compute the predicted covariance.
        inp = np.expand_dims(inp, 0) / np.expand_dims(exp(2 * X[:, :D]), 1)
        ii = np.repeat(inp[:, newaxis, :, :], E, 1)
        ij = np.repeat(inp[newaxis, :, :, :], E, 0)

        iL = np.stack([np.diag(exp(-2 * X[i, :D])) for i in range(E)])
        siL = np.expand_dims(iL, 0) + np.expand_dims(iL, 1)
        R = np.matmul(s, siL) + np.eye(D)
        t = 1 / sqrt(det(R))
        iRs = np.stack(
            [solve(R.reshape(-1, D, D)[i], s) for i in range(E * E)])
        iRs = iRs.reshape(E, E, D, D)
        Q = exp(k[:, newaxis, :, newaxis] + k[newaxis, :, newaxis, :] +
                maha(ii, -ij, iRs / 2))

        S = np.einsum('ji,iljk,kl->il', beta, Q, beta)
        tr = np.hstack([np.sum(Q[i, i] * iK[i]) for i in range(E)])
        S = (S - np.diag(tr)) * t + np.diag(exp(2 * X[:, D]))
        S = S - np.matmul(M[:, newaxis], M[newaxis, :])

        return M, S, V
コード例 #9
0
def compute_path_params(eta, H, psi):
    ''' Compute the gaussian parameters for each path
    H (list of nb_layers elements of shape (K_l x r_{l-1}, r_l)): Lambda 
                                                    parameters for each layer
    psi (list of nb_layers elements of shape (K_l x r_{l-1}, r_{l-1})): Psi 
                                                    parameters for each layer
    eta (list of nb_layers elements of shape (K_l x r_{l-1}, 1)): mu 
                                                    parameters for each layer
    ------------------------------------------------------------------------------------------------
    returns (tuple of len 2): The updated parameters mu_s and sigma for all s in Omega
    '''

    #=====================================================================
    # Retrieving model parameters
    #=====================================================================

    L = len(H)
    k = [len(h) for h in H]
    k_aug = k + [
        1
    ]  # Integrating the number of components of the last layer i.e 1

    r1 = H[0].shape[1]
    r2_L = [h.shape[2] for h in H]  # r[2:L]
    r = [r1] + r2_L  # r augmented

    #=====================================================================
    # Initiating the parameters for all layers
    #=====================================================================

    mu_s = [0 for i in range(L + 1)]
    sigma_s = [0 for i in range(L + 1)]

    # Initialization with the parameters of the last layer
    mu_s[-1] = np.zeros((1, r[-1], 1))  # Inverser k et r plus tard
    sigma_s[-1] = np.eye(r[-1])[n_axis]

    #==================================================================================
    # Compute Gaussian parameters from top to bottom for each path
    #==================================================================================

    for l in reversed(range(0, L)):
        H_repeat = np.repeat(H[l], np.prod(k_aug[l + 1:]), axis=0)
        eta_repeat = np.repeat(eta[l], np.prod(k_aug[l + 1:]), axis=0)
        psi_repeat = np.repeat(psi[l], np.prod(k_aug[l + 1:]), axis=0)

        mu_s[l] = eta_repeat + H_repeat @ np.tile(mu_s[l + 1], (k[l], 1, 1))

        sigma_s[l] = H_repeat @ np.tile(sigma_s[l + 1], (k[l], 1, 1)) @ t(H_repeat, (0, 2, 1)) \
            + psi_repeat

    return mu_s, sigma_s
コード例 #10
0
ファイル: PAL_public.py プロジェクト: skeeley/Count_GPFA
def prep_opt(y_train, N, coeffs):
    summedy_mat = np.sum(y_train, axis=0)
    summedy = np.reshape(summedy_mat, [np.size(summedy_mat), -1])

    a1 = np.reshape([np.repeat(coeffs.T[1], N)], [np.size(summedy), -1])
    a0 = np.reshape([np.repeat(coeffs.T[0], N)], [np.size(summedy), -1])
    a1y = np.multiply(a1, summedy)
    a0y = np.multiply(a0, summedy)

    consts = np.sum(gammaln(
        y_train + scale)) - D * n_neurons * N * gammaln(scale) - np.sum(
            coeffs.T[0] *
            (D * scale * N)) - np.sum(a0y) - np.sum(summedy * np.log(scale))

    return summedy, a1y, a0y, a1, consts
コード例 #11
0
ファイル: dkf_pedulum.py プロジェクト: mzhuang1/opfmbrl
def getGRUTranstionDist(params, data):
    try:
        inputs = np.concatenate([data[k] for k in ['a', 'u']], axis=2)
    except:
        inputs = data['a']

    def update_gru(input, hiddens):
        update = sigmoid(
            concat_and_multiply(params['transion']['update'], input, hiddens))
        reset = sigmoid(
            concat_and_multiply(params['transion']['reset'], input, hiddens))
        hiddens = (1 - update) * hiddens + update * sigmoid(
            concat_and_multiply(params['transion']['hiddenOut'], input,
                                hiddens * reset))
        return hiddens

    num_sequences = inputs.shape[1]
    hiddens = np.repeat(params['transion']['init hiddens'],
                        num_sequences,
                        axis=0)

    output = [(hiddens[:, :hiddens.shape[1] / 2],
               hiddens[:, hiddens.shape[1] / 2:])]
    for input in inputs:  # Iterate over time steps.
        hiddens = update_gru(input, hiddens)
        output.append((hiddens[:, :hiddens.shape[1] / 2],
                       hiddens[:, hiddens.shape[1] / 2:]))
    return zip(*output)
コード例 #12
0
def get_k(stiffness, ke):
    # Constructs a sparse stiffness matrix, k, for use in the displace function.
    nely, nelx = stiffness.shape

    # get position of the nodes of each element in the stiffness matrix
    ely, elx = np.meshgrid(range(nely), range(nelx))  # x, y coords
    ely, elx = ely.reshape(-1, 1), elx.reshape(-1, 1)

    n1 = (nely + 1) * (elx + 0) + (ely + 0)
    n2 = (nely + 1) * (elx + 1) + (ely + 0)
    n3 = (nely + 1) * (elx + 1) + (ely + 1)
    n4 = (nely + 1) * (elx + 0) + (ely + 1)
    edof = np.array([
        2 * n1, 2 * n1 + 1, 2 * n2, 2 * n2 + 1, 2 * n3, 2 * n3 + 1, 2 * n4,
        2 * n4 + 1
    ])
    edof = edof.T[0]

    x_list = np.repeat(edof, 8)  # flat list pointer of each node in an element
    y_list = np.tile(edof,
                     8).flatten()  # flat list pointer of each node in elem

    # make the stiffness matrix
    kd = stiffness.T.reshape(nelx * nely, 1, 1)
    value_list = (kd * np.tile(ke, kd.shape)).flatten()
    return value_list, y_list, x_list
コード例 #13
0
ファイル: gp.py プロジェクト: w1368027790/pilco-learner
    def optimize(self, curb=None):
        assert hasattr(self, "inputs")
        assert hasattr(self, "targets")
        x = np.atleast_2d(self.inputs)
        y = np.atleast_2d(self.targets)
        assert len(x) == len(y)

        n, D = x.shape
        n, E = y.shape

        if curb is not None:
            self.curb = curb
        elif not hasattr(self, "curb"):
            self.curb = Empty()
            self.curb.snr = 500
            self.curb.ls = 100
            self.curb.std = std(x, 0)

        if not hasattr(self, "hyp"):
            self.hyp = np.zeros([E, D + 2])
            self.hyp[:, :D] = np.repeat(log(std(x, 0)).reshape(1, D), E, 0)
            self.hyp[:, D] = log(std(y, 0))
            self.hyp[:, -1] = log(std(y, 0) / 10)

        print("Train hyperparameters of full GP...")
        try:
            self.result = minimize(
                value_and_grad(self.hyp_crub), self.hyp, jac=True)
        except Exception:
            self.result = minimize(
                value_and_grad(self.hyp_crub), self.hyp, jac=True, method='CG')

        self.hyp = self.result.get('x').reshape(E, -1)
        self.cache()
def generate(si, theta, seed=0):
    np.random.seed(seed)
    n, p, r = len(si), 6, 5
    X = np.random.normal(0, 1, n * p).reshape(n, p)
    X_kar = np.kron(np.eye(r), X)
    beta_star = np.random.uniform(0, 1, p * r).reshape(p * r, 1)

    A = np.random.uniform(0, 1, 25).reshape(5, 5)
    Gamma = PCA().fit(A).components_
    Gamma1 = Gamma[:, :2]
    Gamma0 = Gamma[:, 2:]
    out1, out0 = list(), list()
    for i in range(2):
        out1.append([(-.9)**abs(i - j) for j in range(2)])
    for i in range(3):
        out0.append([(-.5)**abs(i - j) for j in range(3)])
    Omega1 = np.array(out1)
    Omega0 = np.array(out0)
    Sigma = np.matmul(np.matmul(Gamma1, Omega1), Gamma1.T) + np.matmul(
        np.matmul(Gamma0, Omega0), Gamma0.T)

    if (theta[0] == 0) & (theta[1] == 0):
        h = np.eye(len(si))
    else:
        h = np.array(rho(si, theta))

    Sigma_kr = np.kron(Sigma, h)
    Err_kr = np.random.multivariate_normal(np.repeat(0, n * r),
                                           Sigma_kr).reshape(n * r, 1)
    Y_kr = np.matmul(X_kar, beta_star) + np.array(Err_kr)
    Y = Y_kr.reshape(n, r)
    return (X, Y)
コード例 #15
0
def log_py_zM_bin_j(lambda_bin_j, y_bin_j, zM, k, nj_bin_j): 
    ''' Compute log p(y_j | zM, s1 = k1) of the jth
    
    lambda_bin_j ( (r + 1) 1darray): Coefficients of the binomial distributions in the GLLVM layer
    y_bin_j (numobs 1darray): The subset containing only the binary/count variables in the dataset
    zM (M x r x k ndarray): M Monte Carlo copies of z for each component k1 of the mixture
    k (int): The number of components of the mixture
    nj_bin_j (int): The number of possible values/maximum values of the jth binary/count variable
    --------------------------------------------------------------
    returns (ndarray): p(y_j | zM, s1 = k1)
    '''
    M = zM.shape[0]
    r = zM.shape[1]
    numobs = len(y_bin_j)
    
    yg = np.repeat(y_bin_j[np.newaxis], axis = 0, repeats = M)
    yg = yg.astype(np.float)

    nj_bin_j = np.float(nj_bin_j)

    coeff_binom = binom(nj_bin_j, yg).reshape(M, 1, numobs)
    
    eta = np.transpose(zM, (0, 2, 1)) @ lambda_bin_j[1:].reshape(1, r, 1)
    eta = eta + lambda_bin_j[0].reshape(1, 1, 1) # Add the constant
    
    den = nj_bin_j * log_1plusexp(eta)
    num = eta @ y_bin_j[np.newaxis, np.newaxis]  
    log_p_y_z = num - den + np.log(coeff_binom)
    
    return np.transpose(log_p_y_z, (0, 2, 1)).astype(np.float)
コード例 #16
0
def draw_z2_z1s(chsi, rho, M, r):
    ''' Draw from f(z^{l+1} | z^{l}, s, Theta) 
    chsi (list of nd-arrays): The chsi parameters for all paths starting at each layer
    rho (list of ndarrays): The rho parameters (covariance matrices) for
                                    all paths starting at each layer
    M (list of int): The number of MC to draw on each layer
    r (list of int): The dimension of each layer
    ---------------------------------------------------------------------------
    returns (list of nd-arrays): z^{l+1} | z^{l}, s, Theta for all (l,s)
    '''

    L = len(chsi)
    S = [chsi[l].shape[0] for l in range(L)]

    z2_z1s = []
    for l in range(L):
        z2_z1s_l = np.zeros((M[l + 1], M[l], S[l], r[l + 1]))
        for s in range(S[l]):
            z2_z1s_kl = multivariate_normal(size = M[l + 1], \
                    mean = rho[l][:,s].flatten(order = 'C'), \
                    cov = block_diag(*np.repeat(chsi[l][s][n_axis], M[l], axis = 0)))

            z2_z1s_l[:, :, s] = z2_z1s_kl.reshape(M[l + 1],
                                                  M[l],
                                                  r[l + 1],
                                                  order='C')

        z2_z1s_l = t(z2_z1s_l, (1, 0, 2, 3))
        z2_z1s.append(z2_z1s_l)

    return z2_z1s
コード例 #17
0
def forward_step(params, X=None, cell_state_0=None, hid_state_0=None):
    hid_state = np.repeat(hid_state_0,
                          X.shape[0] - hid_state_0.shape[0] + 1,
                          axis=0)
    cell_state_1 = np.add(
        np.multiply(  # <-- forget old info
            cell_state_0,
            sigmoid(
                c([X, hid_state]) @ params['forget']['w'] +
                params['forget']['b']),  # <-- forget gate
        ),
        np.multiply(  # <-- write new info
            sigmoid(
                c([X, hid_state]) @ params['ingate']['w'] +
                params['ingate']['b']),  # <-- input gate
            np.tanh(
                c([X, hid_state]) @ params['change']['w'] +
                params['change']['b']),  # <-- change gate
        ))

    hid_state_1 = np.multiply(
        sigmoid(c([X, hid_state]) @ params['outgate']['w']),
        # 1,
        np.tanh(cell_state_1))

    return cell_state_1, hid_state_1
コード例 #18
0
    def get_states_and_transitions(self):
        num_acts, num_states = self.num_acts, self.batch_size
        if isinstance(self.env.observation_space, spaces.Discrete):
            if num_states is None:
                states = np.arange(self.env.observation_space.n)
            else:
                states = np.random.randint(0,
                                           self.env.action_space.n,
                                           size=(num_states, ))
        else:
            assert num_states is not None
            state_low, state_high = self.env.observation_space.low, self.env.observation_space.high
            states = np.random.uniform(state_low,
                                       state_high,
                                       size=(num_states, len(state_low)))

        if isinstance(self.env.action_space, spaces.Discrete):
            num_acts = self.env.action_space.n
            actions = np.arange(num_acts)
        else:
            assert num_acts is not None
            act_low, act_high = self.env.action_space.low, self.env.action_space.high
            actions = np.random.uniform(act_low,
                                        act_high,
                                        size=(num_acts, len(act_low)))

        states = np.tile(states.T, num_acts).T
        actions = np.repeat(actions, num_states, axis=0)
        self.env.vec_set_state(states)
        next_states, rewards, dones, _ = self.env.vec_step(actions)
        return states, next_states, rewards, dones
コード例 #19
0
def draw_z_s(mu_s, sigma_s, eta, M):
    ''' Draw from f(z^{l} | s) for all s in Omega and return the centered and
    non-centered draws
    mu_s (list of nd-arrays): The means of the Gaussians starting at each layer
    sigma_s (list of nd-arrays): The covariance matrices of the Gaussians 
                                                        starting at each layer
    eta (list of nb_layers elements of shape (K_l x r_{l-1}, 1)): mu parameters
                                                        for each layer
    M (list of int): The number of MC to draw on each layer
    -------------------------------------------------------------------------
    returns (list of ndarrays): z^{l} | s for all s in Omega and all l in L
    '''

    L = len(mu_s) - 1
    r = [mu_s[l].shape[1] for l in range(L + 1)]
    S = [mu_s[l].shape[0] for l in range(L + 1)]

    z_s = []
    zc_s = []  # z centered (denoted c) or all l

    for l in range(L + 1):
        zl_s = multivariate_normal(size = (M[l], 1), \
            mean = mu_s[l].flatten(order = 'C'), cov = block_diag(*sigma_s[l]))

        zl_s = zl_s.reshape(M[l], S[l], r[l], order='C')
        z_s.append(t(zl_s, (0, 2, 1)))

        if l < L:  # The last layer is already centered
            eta_ = np.repeat(t(eta[l], (2, 0, 1)), S[l + 1], axis=1)
            zc_s.append(zl_s - eta_)

    return z_s, zc_s
コード例 #20
0
ファイル: policyDKF.py プロジェクト: mzhuang1/opfmbrl
def getGRUTranstionDist(params, data, latents):
    inputs = np.concatenate(map(lambda x: np.expand_dims(x, axis=0), latents),
                            axis=0)
    if ('a' in data and 'u' in data):
        inputs = np.concatenate([data[k] for k in ['a', 'u']] + [inputs],
                                axis=2)

    def update_gru(input, hiddens):
        update = sigmoid(
            concat_and_multiply(params['transion']['update'], input, hiddens))
        reset = sigmoid(
            concat_and_multiply(params['transion']['reset'], input, hiddens))
        hiddens = (1 - update) * hiddens + update * sigmoid(
            concat_and_multiply(params['transion']['hiddenOut'], input,
                                hiddens * reset))
        return hiddens

    num_sequences = inputs.shape[1]
    hiddens = np.repeat(params['transion']['init hiddens'],
                        num_sequences,
                        axis=0)

    output = []
    for input in inputs:  # Iterate over time steps.
        hiddens = update_gru(input, hiddens)
        output.append((hiddens[:, :hiddens.shape[1] / 2],
                       hiddens[:, hiddens.shape[1] / 2:]))
    return zip(*output)
コード例 #21
0
ファイル: utilities.py プロジェクト: RobeeF/DDGMM
def compute_rho(eta, H, psi, mu_s, sigma_s, z_c, chsi):
    ''' Compute rho as defined in equation (8) of the DGMM paper 
    eta (list of nb_layers elements of shape (K_l x r_{l-1}, 1)): mu 
                                                    parameters for each layer    
    H (list of nb_layers elements of shape (K_l x r_{l-1}, r_l)): Lambda 
                                                    parameters for each layer
    psi (list of nb_layers elements of shape (K_l x r_{l-1}, r_{l-1})): Psi 
                                                    parameters for each layer
    z_c (list of nd-arrays) z^{(l)} - eta^{(l)} for each layer. 
    chsi (list of nd-arrays): The chsi parameters for each layer
    -----------------------------------------------------------------------
    returns (list of ndarrays): The rho parameters (covariance matrices) 
                                    for all paths starting at each layer
    '''
    
    L = len(H)    
    rho = [0 for i in range(L)]
    k = [len(h) for h in H]
    k_aug = k + [1] 

    for l in range(0, L):
        sigma_next_l = np.tile(sigma_s[l + 1], (k[l], 1, 1))
        mu_next_l = np.tile(mu_s[l + 1], (k[l], 1, 1))

        HxPsi_inv = t(H[l], (0, 2, 1)) @ pinv(psi[l])
        HxPsi_inv = np.repeat(HxPsi_inv, np.prod(k_aug[l + 1: ]), axis = 0)

        rho[l] = chsi[l][n_axis] @ (HxPsi_inv[n_axis] @ z_c[l][..., n_axis] \
                                    + (pinv(sigma_next_l) @ mu_next_l)[n_axis])
                
    return rho
コード例 #22
0
    def get_causal_effect(params, do_A, w):
        "to be called within experiment function."
        np.random.seed(4)
        random.seed(4)
        al, bl = params
        L = bl * bl * np.exp(-L0 / al / al / 2) + 1e-6 * EYEN
        if nystr:
            alpha = EYEN - eig_vec_K @ np.linalg.inv(
                eig_vec_K.T @ L @ eig_vec_K / N2 + np.diag(1 / eig_val_K / N2)) @ eig_vec_K.T @ L / N2
            alpha = alpha @ W_nystr @ Y * N2
        else:
            LWL_inv = chol_inv(L @ W @ L + L / N2 + JITTER * EYEN)
            alpha = LWL_inv @ L @ W @ Y
            # L_W_inv = chol_inv(W*N2+L_inv)

        EYhat_do_A = []
        for a in do_A:
            a = np.repeat(a, [w.shape[0]]).reshape(-1, 1)
            w = w.reshape(-1, 1)
            aw = np.concatenate([a, w], axis=-1)
            ate_L0 = _sqdist(aw, X)
            ate_L = bl * bl * np.exp(-ate_L0 / al / al / 2)
            h_out = ate_L @ alpha

            mean_h = np.mean(h_out).reshape(-1, 1)
            EYhat_do_A.append(mean_h)
            print('a = {}, beta_a = {}'.format(np.mean(a), mean_h))

        return np.concatenate(EYhat_do_A)
コード例 #23
0
ファイル: utilities.py プロジェクト: RobeeF/DDGMM
def compute_chsi(H, psi, mu_s, sigma_s):
    ''' Compute chsi as defined in equation (8) of the DGMM paper 
    H (list of nb_layers elements of shape (K_l x r_l-1, r_l)): Lambda 
                                                    parameters for each layer
    psi (list of nb_layers elements of shape (K_l x r_l-1, r_l-1)): Psi 
                                                    parameters for each layer
    mu_s (list of nd-arrays): The means of the Gaussians starting at each layer
    sigma_s (list of nd-arrays): The covariance matrices of the Gaussians 
                                                    starting at each layer
    ------------------------------------------------------------------------------------------------
    returns (list of ndarray): The chsi parameters for all paths starting at each layer
    '''
    L = len(H)
    k = [len(h) for h in H]
    
    #=====================================================================
    # Initiating the parameters for all layers
    #=====================================================================
    
    # Initialization with the parameters of the last layer    
    chsi = [0 for i in range(L)]
    chsi[-1] = pinv(pinv(sigma_s[-1]) + t(H[-1], (0, 2, 1)) @ pinv(psi[-1]) @ H[-1]) 

    #==================================================================================
    # Compute chsi from top to bottom 
    #==================================================================================
        
    for l in range(L - 1):
        Ht_psi_H = t(H[l], (0, 2, 1)) @ pinv(psi[l]) @ H[l]
        Ht_psi_H = np.repeat(Ht_psi_H, np.prod(k[l + 1:]), axis = 0)
        
        sigma_next_l = np.tile(sigma_s[l + 1], (k[l], 1, 1))
        chsi[l] = pinv(pinv(sigma_next_l) + Ht_psi_H)
            
    return chsi
コード例 #24
0
ファイル: variational.py プロジェクト: pankajkarman/ssm
    def _initialize_variational_params(self, data, input, mask, tag):
        T = data.shape[0]
        D = self.D

        # Initialize the mean with the linear model, if applicable
        ms = self.model.emissions.invert(data, input=input, mask=mask, tag=tag)

        # Initialize with no covariance between adjacent time steps
        # NOTE: it's important to initialize A and Q to be nonzero,
        # otherwise the gradients wrt them are zero and they never
        # change during optimization!
        As = np.repeat(np.eye(D)[None, :, :], T-1, axis=0)
        bs = np.zeros((T-1, D))
        Qi_sqrts = np.repeat(np.eye(D)[None, :, :], T-1, axis=0)
        Ri_sqrts = 1./np.sqrt(self.initial_variance) * np.repeat(np.eye(D)[None, :, :], T, axis=0)
        return As, bs, Qi_sqrts, ms, Ri_sqrts
コード例 #25
0
 def _parameter_initialiser(self, x, c=None, n=None):
     if (c is not None) & ((c == 0).all()):
         x = np.repeat(x, n)
         p = self._mom(x)
     else:
         p = 1., 1.
     return p
    def calc_result(self, x, y, fun_args, all_things, exp_kappa_int,
                    exp_kappa_bdy, grad_kappa_x, grad_kappa_y):
        result = 0

        A_1, A_2, A_3, B = self.__op_cache__.operators
        A_1_bar, A_2_bar, A_3_bar, B_bar = self.__op_cache__.operators_bar

        def printer(*args):
            if self.__verbosity__ > 0:
                print(*args)

        for item in all_things:
            try:
                function = self.__op_cache__[item]
            except Exception as ex:
                printer('Failed to get {}'.format(item))
                raise ex
            new_mat = function(x, y, fun_args)

            # unbarred
            if A_1 in item:
                printer('Transforming A_1')
                multiplier = np.repeat(grad_kappa_x * exp_kappa_int,
                                       y.shape[0], 1)
                new_mat = multiplier * new_mat
            elif A_2 in item:
                printer('Transforming A_2')
                multiplier = np.repeat(grad_kappa_y * exp_kappa_int,
                                       y.shape[0], 1)
                new_mat = multiplier * new_mat
            elif A_3 in item:
                printer('Transforming A_3')
                multiplier = np.repeat(exp_kappa_int, y.shape[0], 1)
                new_mat = multiplier * new_mat

            # barred
            if A_1_bar in item:
                printer('Transforming A_1_bar')
                new_mat = np.repeat(grad_kappa_x.T * exp_kappa_int.T,
                                    x.shape[0], 0) * new_mat
            elif A_2_bar in item:
                printer('Transforming A_2_bar')
                new_mat = np.repeat(grad_kappa_y.T * exp_kappa_int.T,
                                    x.shape[0], 0) * new_mat
            elif A_3_bar in item:
                printer('Transforming A_3_bar')
                new_mat = np.repeat(exp_kappa_int.T, x.shape[0], 0) * new_mat

            # boundary
            if B in item:
                printer('Transforming B')
                new_mat = np.repeat(exp_kappa_bdy, y.shape[0], 1) * new_mat
            if B_bar in item:
                printer('Transforming B_bar')
                new_mat = np.repeat(exp_kappa_bdy.T, x.shape[0], 0) * new_mat
            result += new_mat
        return result
コード例 #27
0
def getSigSeriesG(sts, nt, a, mu, sig):

    # sts has shape T x M
    # the rest are numbers
    gaus        = a*np.exp(-(np.arange(nt)-mu)**2/sig**2)
    nper        = np.int(nt/sts.shape[0])
    stsRepeated = np.vstack([np.repeat(sts,nper,axis=0),np.zeros((nt-nper*6,sts.shape[1]))])
    return (stsRepeated.T*gaus).T
コード例 #28
0
    def sample(self, n, mu, seed):
        rstate = np.random.get_state()
        np.random.seed(seed)

        #x = 11 * np.random.random(200) - 6.0 # x lies in [-6,5]
        x1 = np.random.normal(np.repeat(0, self.d), 1.0, size=n)
        y1 = x1 + x1**2 + np.random.random(200)

        #x = 2 * np.random.random(200) - 2.0 # x lies in [-2,0]
        x2 = np.random.normal(np.repeat(mu, self.d), 1.0, size=n)
        y2 = x2 + x2**2 + np.random.random(200)

        return x1[:,
                  np.newaxis], x2[:,
                                  np.newaxis], y1[:,
                                                  np.newaxis], y2[:,
                                                                  np.newaxis]
コード例 #29
0
ファイル: cond_aevb.py プロジェクト: afcarl/autopaint
def compute_log_prob(enc_w, dec_w, encode, decode_log_like, base_data,
                     conditional_data, samples_per_image, latent_dimensions,
                     rs):
    (mus, log_sigs) = encode(enc_w, conditional_data)
    sigs = np.exp(log_sigs)
    noise = rs.randn(samples_per_image, conditional_data.shape[0],
                     latent_dimensions)
    Z_samples = mus + sigs * noise
    Z_samples = np.reshape(
        Z_samples,
        (conditional_data.shape[0] * samples_per_image, latent_dimensions),
        order='F')
    conditional_repeat = np.repeat(conditional_data, samples_per_image, axis=0)
    base_repeat = np.repeat(base_data, samples_per_image, axis=0)
    decoder_input = np.concatenate((Z_samples, base_repeat), axis=1)
    mean_log_prob = decode_log_like(dec_w, decoder_input, conditional_repeat)
    return mean_log_prob
コード例 #30
0
ファイル: lstm.py プロジェクト: agibsonccc/autograd
 def outputs(weights, inputs):
     """Goes from right to left, updating the state."""
     forget_weights  = parser.get(weights, 'forget')
     change_weights  = parser.get(weights, 'change')
     ingate_weights  = parser.get(weights, 'ingate')
     outgate_weights = parser.get(weights, 'outgate')
     predict_weights = parser.get(weights, 'predict')
     num_sequences = inputs.shape[1]
     hiddens = np.repeat(parser.get(weights, 'init_hiddens'), num_sequences, axis=0)
     cells   = np.repeat(parser.get(weights, 'init_cells'),   num_sequences, axis=0)
     output = []
     for input in inputs:  # Iterate over time steps.
         hiddens, cells = update_lstm(input, hiddens, cells, forget_weights,
                                      change_weights, ingate_weights, outgate_weights)
         cur_output = activations(predict_weights, hiddens)
         output.append(cur_output - logsumexp(cur_output))
     return output # Output normalized log-probabilities.
コード例 #31
0
ファイル: observations.py プロジェクト: eackermann/ssm
 def _compute_sigmas(self, data, input, mask, tag):
     T, D = data.shape
     
     sigma_init = np.exp(self.inv_sigma_init) * np.ones((self.lags, self.K, self.D))
     sigma_ar = np.repeat(np.exp(self.inv_sigmas)[None, :, :], T-self.lags, axis=0)
     sigmas = np.concatenate((sigma_init, sigma_ar))
     assert sigmas.shape == (T, self.K, D)
     return sigmas
コード例 #32
0
ファイル: lstm.py プロジェクト: karthiknrao/autograd
    def outputs(weights, inputs):
        """Outputs normalized log-probabilities of each character, plus an
           extra one at the end."""
        forget_weights  = parser.get(weights, 'forget')
        change_weights  = parser.get(weights, 'change')
        ingate_weights  = parser.get(weights, 'ingate')
        outgate_weights = parser.get(weights, 'outgate')
        predict_weights = parser.get(weights, 'predict')
        num_sequences = inputs.shape[1]
        hiddens = np.repeat(parser.get(weights, 'init_hiddens'), num_sequences, axis=0)
        cells   = np.repeat(parser.get(weights, 'init_cells'),   num_sequences, axis=0)

        output = [hiddens_to_output_probs(predict_weights, hiddens)]
        for input in inputs:  # Iterate over time steps.
            hiddens, cells = update_lstm(input, hiddens, cells, forget_weights,
                                         change_weights, ingate_weights, outgate_weights)
            output.append(hiddens_to_output_probs(predict_weights, hiddens))
        return output
コード例 #33
0
ファイル: eit.py プロジェクト: jcockayne/bayesian_pdes
    def calc_result(self, x, y, fun_args, all_things, exp_kappa_int, exp_kappa_bdy, grad_kappa_x, grad_kappa_y):
        result = 0

        A_1, A_2, A_3, B = self.__op_cache__.operators
        A_1_bar, A_2_bar, A_3_bar, B_bar = self.__op_cache__.operators_bar

        def printer(*args):
            if self.__verbosity__ > 0:
                print(*args)

        for item in all_things:
            try:
                function = self.__op_cache__[item]
            except Exception as ex:
                printer('Failed to get {}'.format(item))
                raise ex
            new_mat = function(x, y, fun_args)



            # unbarred
            if A_1 in item:
                printer('Transforming A_1')
                multiplier = np.repeat(grad_kappa_x*exp_kappa_int, y.shape[0], 1)
                new_mat = multiplier * new_mat
            elif A_2 in item:
                printer('Transforming A_2')
                multiplier = np.repeat(grad_kappa_y*exp_kappa_int, y.shape[0], 1)
                new_mat = multiplier * new_mat
            elif A_3 in item:
                printer('Transforming A_3')
                multiplier = np.repeat(exp_kappa_int, y.shape[0], 1)
                new_mat = multiplier * new_mat

            # barred
            if A_1_bar in item:
                printer('Transforming A_1_bar')
                new_mat = np.repeat(grad_kappa_x.T*exp_kappa_int.T,x.shape[0],0) * new_mat
            elif A_2_bar in item:
                printer('Transforming A_2_bar')
                new_mat = np.repeat(grad_kappa_y.T*exp_kappa_int.T,x.shape[0],0) * new_mat
            elif A_3_bar in item:
                printer('Transforming A_3_bar')
                new_mat = np.repeat(exp_kappa_int.T,x.shape[0],0) * new_mat

            # boundary
            if B in item:
                printer('Transforming B')
                new_mat = np.repeat(exp_kappa_bdy, y.shape[0], 1) * new_mat
            if B_bar in item:
                printer('Transforming B_bar')
                new_mat = np.repeat(exp_kappa_bdy.T, x.shape[0], 0) * new_mat
            result += new_mat
        return result
コード例 #34
0
ファイル: rnn.py プロジェクト: FrankSzn/autograd
    def outputs(weights, inputs):
        """Goes from right to left, updating the state."""
        num_sequences = inputs.shape[1]
        hiddens = np.repeat(parser.get(weights, 'init_hiddens'), num_sequences, axis=0)
        change_weights    = parser.get(weights, 'change')
        predict_weights   = parser.get(weights, 'predict')

        output = [hiddens_to_output_probs(predict_weights, hiddens)]
        for input in inputs:  # Iterate over time steps.
            hiddens = update(input, hiddens, change_weights)
            output.append(hiddens_to_output_probs(predict_weights, hiddens))
        return output
コード例 #35
0
ファイル: gmm_svae_synth.py プロジェクト: mattjj/svae
def make_pinwheel_data(radial_std, tangential_std, num_classes, num_per_class, rate):
    rads = np.linspace(0, 2*np.pi, num_classes, endpoint=False)

    features = npr.randn(num_classes*num_per_class, 2) \
        * np.array([radial_std, tangential_std])
    features[:,0] += 1.
    labels = np.repeat(np.arange(num_classes), num_per_class)

    angles = rads[labels] + rate * np.exp(features[:,0])
    rotations = np.stack([np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)])
    rotations = np.reshape(rotations.T, (-1, 2, 2))

    return 10*npr.permutation(np.einsum('ti,tij->tj', features, rotations))
コード例 #36
0
ファイル: lstm.py プロジェクト: AugustLONG/autograd
def lstm_predict(params, inputs):
    def update_lstm(input, hiddens, cells):
        change  = np.tanh(concat_and_multiply(params['change'], input, hiddens))
        forget  = sigmoid(concat_and_multiply(params['forget'], input, hiddens))
        ingate  = sigmoid(concat_and_multiply(params['ingate'], input, hiddens))
        outgate = sigmoid(concat_and_multiply(params['outgate'], input, hiddens))
        cells   = cells * forget + ingate * change
        hiddens = outgate * np.tanh(cells)
        return hiddens, cells

    def hiddens_to_output_probs(hiddens):
        output = concat_and_multiply(params['predict'], hiddens)
        return output - logsumexp(output, axis=1, keepdims=True) # Normalize log-probs.

    num_sequences = inputs.shape[1]
    hiddens = np.repeat(params['init hiddens'], num_sequences, axis=0)
    cells   = np.repeat(params['init cells'],   num_sequences, axis=0)

    output = [hiddens_to_output_probs(hiddens)]
    for input in inputs:  # Iterate over time steps.
        hiddens, cells = update_lstm(input, hiddens, cells)
        output.append(hiddens_to_output_probs(hiddens))
    return output
コード例 #37
0
ファイル: data.py プロジェクト: davidweichiang/autograd
def make_pinwheel(radial_std, tangential_std, num_classes, num_per_class, rate,
                  rs=npr.RandomState(0)):
    """Based on code by Ryan P. Adams."""
    rads = np.linspace(0, 2*np.pi, num_classes, endpoint=False)

    features = rs.randn(num_classes*num_per_class, 2) \
        * np.array([radial_std, tangential_std])
    features[:, 0] += 1
    labels = np.repeat(np.arange(num_classes), num_per_class)

    angles = rads[labels] + rate * np.exp(features[:,0])
    rotations = np.stack([np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)])
    rotations = np.reshape(rotations.T, (-1, 2, 2))

    return np.einsum('ti,tij->tj', features, rotations)
コード例 #38
0
ファイル: rnn.py プロジェクト: burakbayramli/classnotes
def rnn_predict(params, inputs):
    def update_rnn(input, hiddens):
        return np.tanh(concat_and_multiply(params['change'], input, hiddens))

    def hiddens_to_output_probs(hiddens):
        output = concat_and_multiply(params['predict'], hiddens)
        return output - logsumexp(output, axis=1, keepdims=True) 

    num_sequences = inputs.shape[1]
    hiddens = np.repeat(params['init hiddens'], num_sequences, axis=0)
    output = [hiddens_to_output_probs(hiddens)]

    for input in inputs:  # Iterate over time steps.
        hiddens = update_rnn(input, hiddens)
        output.append(hiddens_to_output_probs(hiddens))
    return output
コード例 #39
0
ファイル: build_rnn.py プロジェクト: SunLinJie/RNN4MNIST
    def process_one_batch(inputs, weights):
        """Process one batch of image sets

        Recurrent Network process:
            h1_out = H( W[x_h1]*X(t) + W[h2_h1]*h2_out + bias[h1] )
            h2_out = H( W[h1_h2]*h1_out + bias[h2] )
            output = H( W[h2_out]*h2_out + bias[out] )
        """
        batch_size = inputs.shape[1]
        w_in_2_h1 = parser.get(weights, "input_2_h1")
        w_h1_2_h2 = parser.get(weights, "h1_2_h2")
        w_h2_2_out = parser.get(weights, "h2_2_output")
        h2_out = np.repeat(parser.get(weights, "pre_h2_out"), batch_size, axis=0)
        outputs = []
        for sub_input in inputs:
            input_x = x_with_bias(np.concatenate((sub_input, h2_out), axis=1))
            h1_in = w_act_on_x(input_x, w_in_2_h1)
            h1_out = hidden_actfun(h1_in)
            h2_in = w_act_on_x(x_with_bias(h1_out), w_h1_2_h2)
            h2_out = hidden_actfun(h2_in)
            output_in = w_act_on_x(x_with_bias(h2_out), w_h2_2_out)
            output_out = output_actfun(output_in)
            outputs.append(output_out)
        return outputs
コード例 #40
0
ファイル: test_numpy.py プロジェクト: xindaya/autograd
 def fun(x): return to_scalar(np.repeat(x, 1, axis=0))
 d_fun = lambda x : to_scalar(grad(fun)(x))
コード例 #41
0
ファイル: ar.py プロジェクト: jan-matthis/autohmm
    def _init_params(self, data, lengths=None, params='stmpaw'):
        X = data['obs']

        if self.n_lags == 0:
            super(ARTHMM, self)._init_params(data, lengths, params)
        else:
            if 's' in params:
                super(ARTHMM, self)._init_params(data, lengths, 's')

            if 't' in params:
                super(ARTHMM, self)._init_params(data, lengths, 't')

            if 'm' in params or 'a' in params or 'p' in params:
                kmmod = cluster.KMeans(
                    n_clusters=self.n_unique,
                    random_state=self.random_state).fit(X)
                kmeans = kmmod.cluster_centers_
                ar_mod = []
                ar_alpha = []
                ar_resid = []
                if not self.shared_alpha:
                    for u in range(self.n_unique):
                        ar_mod.append(smapi.tsa.AR(X[kmmod.labels_ == \
                                                u]).fit(self.n_lags))
                        ar_alpha.append(ar_mod[u].params[1:])
                        ar_resid.append(ar_mod[u].resid)
                else:
                    # run one AR model on most part of time series
                    # that has most points assigned after clustering
                    mf = np.argmax(np.bincount(kmmod.labels_))
                    ar_mod.append(smapi.tsa.AR(X[kmmod.labels_ == \
                                              mf]).fit(self.n_lags))
                    ar_alpha.append(ar_mod[0].params[1:])
                    ar_resid.append(ar_mod[0].resid)

            if 'm' in params:
                mu_init = np.zeros((self.n_unique, self.n_features))
                for u in range(self.n_unique):
                    ar_idx = u
                    if self.shared_alpha:
                        ar_idx = 0
                    mu_init[u] = kmeans[u, 0] - np.dot(
                            np.repeat(kmeans[u, 0], self.n_lags),
                            ar_alpha[ar_idx])
                self.mu_ = np.copy(mu_init)

            if 'p' in params:
                precision_init = np.zeros((self.n_unique, self.n_features))
                for u in range(self.n_unique):
                    if not self.shared_alpha:
                        maxVar = np.max([np.var(ar_resid[i]) for i in
                                        range(self.n_unique)])
                    else:
                        maxVar = np.var(ar_resid[0])
                    precision_init[u] = 1.0 / maxVar
                self.precision_ = np.copy(precision_init)

            if 'a' in params:
                alpha_init = np.zeros((self.n_unique, self.n_lags))
                for u in range(self.n_unique):
                    ar_idx = u
                    if self.shared_alpha:
                        ar_idx = 0
                    alpha_init[u, :] = ar_alpha[ar_idx]
                self.alpha_ = alpha_init
コード例 #42
0
ファイル: basic.py プロジェクト: ParticularJ/MLAlgorithms
 def backward_pass(self, delta):
     return np.repeat(delta[:, np.newaxis, :], 2, 1)
コード例 #43
0
ファイル: ar.py プロジェクト: sarah-strauss/autohmm
    def _init_params(self, data, lengths=None, params='stmpaw'):
        X = data['obs']

        if self.n_lags == 0:
            super(ARTHMM, self)._init_params(data, lengths, params)
        else:
            if 's' in params:
                super(ARTHMM, self)._init_params(data, lengths, 's')

            if 't' in params:
                super(ARTHMM, self)._init_params(data, lengths, 't')

            if 'm' in params or 'a' in params or 'p' in params:
                kmmod = cluster.KMeans(
                    n_clusters=self.n_unique,
                    random_state=self.random_state).fit(X)
                kmeans = kmmod.cluster_centers_
                ar_mod = []
                ar_alpha = []
                ar_resid = []

                if not self.shared_alpha:
                    count = 0
                    for u in range(self.n_unique):
                        for f in range(self.n_features):
                            ar_mod.append(smapi.tsa.AR(X[kmmod.labels_ == \
                                            u,f]).fit(self.n_lags))
                            ar_alpha.append(ar_mod[count].params[1:])
                            ar_resid.append(ar_mod[count].resid)
                            count += 1
                else:
                    # run one AR model on most part of time series
                    # that has most points assigned after clustering
                    mf = np.argmax(np.bincount(kmmod.labels_))
                    for f in range(self.n_features):
                        ar_mod.append(smapi.tsa.AR(X[kmmod.labels_ == \
                                                    mf,f]).fit(self.n_lags))
                        ar_alpha.append(ar_mod[f].params[1:])
                        ar_resid.append(ar_mod[f].resid)

            if 'm' in params:
                mu_init = np.zeros((self.n_unique, self.n_features))
                for u in range(self.n_unique):
                    for f in range(self.n_features):
                        ar_idx = u
                        if self.shared_alpha:
                            ar_idx = 0
                        mu_init[u,f] = kmeans[u, f] - np.dot(
                        np.repeat(kmeans[u, f], self.n_lags), ar_alpha[ar_idx])
                self.mu_ = np.copy(mu_init)

            if 'p' in params:

                precision_init = \
                np.zeros((self.n_unique, self.n_features, self.n_features))

                for u in range(self.n_unique):
                    if self.n_features == 1:
                        precision_init[u] = 1.0/(np.var(X[kmmod.labels_ == u]))

                    else:
                        precision_init[u] = np.linalg.inv\
                        (np.cov(np.transpose(X[kmmod.labels_ == u])))

                        # Alternative: Initialization using ar_resid
                        #for f in range(self.n_features):
                        #    if not self.shared_alpha:
                        #        precision_init[u,f,f] = 1./np.var(ar_resid[count])
                        #        count += 1
                        #    else:
                        #        precision_init[u,f,f] = 1./np.var(ar_resid[f])'''

                self.precision_ = np.copy(precision_init)

            if 'a' in params:
                if self.shared_alpha:
                    alpha_init = np.zeros((1, self.n_lags))
                    alpha_init = ar_alpha[0].reshape((1, self.n_lags))
                else:
                    alpha_init = np.zeros((self.n_unique, self.n_lags))
                    for u in range(self.n_unique):
                        ar_idx = 0
                        alpha_init[u] = ar_alpha[ar_idx]
                        ar_idx += self.n_features
                self.alpha_ = np.copy(alpha_init)
コード例 #44
0
ファイル: glmm.py プロジェクト: onenoc/lfvbae
def get_pi(beta,X,alpha):
    linear_pred = np.dot(X,beta[1:])
    linear_pred = np.tile(linear_pred,len(alpha))
    alpha = np.repeat(alpha,len(np.dot(X,beta[1:])))
    return logistic(beta[0]+linear_pred+0*alpha)
コード例 #45
0
ファイル: tm.py プロジェクト: simonkamronn/autohmm
 def _compute_log_likelihood(self, data, from_=0, to_=-1):
     ll = self._ll(self.mu_, self.precision_, data['obs'][from_:to_])
     rep = self.n_chain
     return np.repeat(ll, rep).reshape(-1, self.n_unique*rep)