コード例 #1
0
 def fun(x): return to_scalar(np.rot90(x))
 d_fun = lambda x : to_scalar(grad(fun)(x))
コード例 #2
0
ファイル: test_numpy.py プロジェクト: ASAPPinc/autograd
 def fun(x): return to_scalar(np.rot90(x))
 d_fun = lambda x : to_scalar(grad(fun)(x))
コード例 #3
0
 def fun(x):
     return np.rot90(x)
コード例 #4
0
 def fun(x):
     return to_scalar(np.rot90(x))
コード例 #5
0
ファイル: LabMeatMain2.py プロジェクト: zcase/labmeat
    def callback_Test(mvable_pts, iter, g):
        # img, vesselImage, vesselPts = updateVesselImg(vesselImage, vesselSecretion, mvable_pts, img)
        # Loss
        ax_loss.cla()
        ax_loss.set_title('Train Loss')
        ax_loss.set_xlabel('t')
        ax_loss.set_ylabel('loss')
        nowLoss = fitness(mvable_pts, iter)
        all_loss.append(nowLoss)
        time = np.arange(0, len(all_loss), 1)
        ax_loss.plot(time, all_loss, '-', linestyle='solid',
                     label='loss')  #, color = colors[i]
        ax_loss.set_xlim(time.min(), time.max())
        ax_loss.legend(loc="upper left")

        ax_img.cla()
        ax_img.set_title('Flow Image')
        ax_img.tick_params(axis='x',
                           which='both',
                           bottom=False,
                           top=False,
                           labelbottom=False)
        ax_img.tick_params(axis='y',
                           which='both',
                           left=False,
                           right=False,
                           labelleft=False)
        imgplot = ax_img.imshow(np.rot90(np.array(img)))

        ax_diffused_img.cla()
        diffused_img_plt1 = diffusion(mvable_pts, vesselPts, img, vesselImage)
        ax_diffused_img.set_title('Diffused Image')
        ax_diffused_img.tick_params(axis='x',
                                    which='both',
                                    bottom=False,
                                    top=False,
                                    labelbottom=False)
        ax_diffused_img.tick_params(axis='y',
                                    which='both',
                                    left=False,
                                    right=False,
                                    labelleft=False)
        diffusedplot = ax_diffused_img.imshow(np.rot90(diffused_img_plt1))

        ax_loss_map.cla()
        loss_map = create_loss_map(np.array(diffused_img_plt1), vesselPts,
                                   threshold, iter)
        ax_loss_map.set_title('Diffusion Loss Map')
        ax_loss_map.tick_params(axis='x',
                                which='both',
                                bottom=False,
                                top=False,
                                labelbottom=False)
        ax_loss_map.tick_params(axis='y',
                                which='both',
                                left=False,
                                right=False,
                                labelleft=False)
        loss_plot = ax_loss_map.imshow(np.rot90(np.array(loss_map)))

        plt.draw()
        saveImageOne(iter)
        plt.pause(0.001)
        return 3
コード例 #6
0
ファイル: LabMeatMain2.py プロジェクト: zcase/labmeat
    img = np.zeros((imageSize, imageSize))
    vesselImage = np.zeros((imageSize, imageSize)) * vesselSecretion
    # movablePts = [(imageSize/2, imageSize/2.0), (imageSize/2 + 0.5, imageSize - 0.5)]
    # movablePts = [(2.01,2.5)]
    movablePts = [(2.0, 2.5)]

    # movablePts = [(imageSize/2 + 0.5, imageSize - 5.5)]
    # movablePts = [(imageSize/2.0, imageSize/2.0)]
    vesselPts = [(int(x), int(y)) for (x, y) in movablePts]
    for (xi, yi) in vesselPts:
        vesselImage[xi, yi] = vesselSecretion

    print('Starting Initial Diffusion')
    img = initial_diffusion(movablePts, vesselPts, img, vesselImage)
    print('Ended Initial Diffusion')
    plt.imshow(np.rot90(np.array(img)[1:, 1:]))
    plt.show()

    # os.sys.exit()


    def fitness(movablePts, iter):
        # vesselPts, img, vesselImage are obtained through dynamic binding
        diffused_img = diffusion(movablePts, vesselPts, img, vesselImage)
        return loss_health(diffused_img, vesselPts, threshold, iter)

    # Setup display figures
    fig = plt.figure(figsize=(16, 4), facecolor='white')
    ax_loss = fig.add_subplot(151, frameon=True)
    ax_node_graph = fig.add_subplot(152, frameon=True)
    ax_img = fig.add_subplot(153, frameon=True)
コード例 #7
0
def conv2(x, y, mode='same'):
    return np.rot90(convolve2d(np.rot90(x, 2), np.rot90(y, 2), mode=mode), 2)