コード例 #1
0
    def callback(params):
        print("Log likelihood {}".format(-objective(params)))
        plt.cla()

        # Show posterior marginals.
        plot_xs = np.reshape(np.linspace(-7, 7, 300), (300,1))
        pred_mean, pred_cov = predict(params, X, y, plot_xs)
        marg_std = np.sqrt(np.diag(pred_cov))
        ax.plot(plot_xs, pred_mean, 'b')
        ax.fill(np.concatenate([plot_xs, plot_xs[::-1]]),
                np.concatenate([pred_mean - 1.96 * marg_std,
                               (pred_mean + 1.96 * marg_std)[::-1]]),
                alpha=.15, fc='Blue', ec='None')

        # Show samples from posterior.
        rs = npr.RandomState(0)
        sampled_funcs = rs.multivariate_normal(pred_mean, pred_cov, size=10)
        ax.plot(plot_xs, sampled_funcs.T)

        ax.plot(X, y, 'kx')
        ax.set_ylim([-1.5, 1.5])
        ax.set_xticks([])
        ax.set_yticks([])
        plt.draw()
        plt.pause(1.0/60.0)
コード例 #2
0
ファイル: gmm.py プロジェクト: yinyumeng/HyperParameterTuning
def make_pinwheel_data(num_spokes=5, points_per_spoke=40, rate=1.0, noise_std=0.005):
    """Make synthetic data in the shape of a pinwheel."""
    spoke_angles = np.linspace(0, 2 * np.pi, num_spokes + 1)[:-1]
    rs = npr.RandomState(0)
    x = np.linspace(0.1, 1, points_per_spoke)
    xs = np.concatenate([x * np.cos(angle + x * rate) + noise_std * rs.randn(len(x))
                         for angle in spoke_angles])
    ys = np.concatenate([x * np.sin(angle + x * rate) + noise_std * rs.randn(len(x))
                         for angle in spoke_angles])
    return np.concatenate([np.expand_dims(xs, 1), np.expand_dims(ys,1)], axis=1)
コード例 #3
0
def make_pinwheel_data(num_classes, num_per_class, rate=2.0, noise_std=0.001):
    spoke_angles = np.linspace(0, 2*np.pi, num_classes+1)[:-1]

    rs = npr.RandomState(0)
    x = np.linspace(0.1, 1, num_per_class)
    xs = np.concatenate([rate *x * np.cos(angle + x * rate) + noise_std * rs.randn(num_per_class)
                         for angle in spoke_angles])
    ys = np.concatenate([rate *x * np.sin(angle + x * rate) + noise_std * rs.randn(num_per_class)
                         for angle in spoke_angles])
    return np.concatenate([np.expand_dims(xs, 1), np.expand_dims(ys,1)], axis=1)
コード例 #4
0
ファイル: try.py プロジェクト: yinyumeng/HyperParameterTuning
def build_toy_dataset(n_data=40, noise_std=0.1):
    D = 1
    rs = npr.RandomState(0)
    inputs  = np.concatenate([np.linspace(0, 2, num=n_data/2),
                              np.linspace(6, 8, num=n_data/2)])
    inputs1  = np.concatenate([np.linspace(0, 2, num=n_data/2),
                              np.linspace(6, 8, num=n_data/2)])
    targets = np.cos(inputs) + rs.randn(n_data) * noise_std
    inputs = (inputs - 4.0) / 4.0
    inputs1 = (inputs1 - 4.0) / 4.0
    inputs  = inputs.reshape((len(inputs), D))
    inputs1  = inputs.reshape((len(inputs), D))
    imputfull =  np.concatenate((inputs , inputs1),axis=1)
    targets = targets.reshape((len(targets), D))
    return inputs, targets
コード例 #5
0
ファイル: gmm.py プロジェクト: yinyumeng/HyperParameterTuning
 def plot_gmm(params, ax, num_points=100):
     angles = np.expand_dims(np.linspace(0, 2*np.pi, num_points), 1)
     xs, ys = np.cos(angles), np.sin(angles)
     circle_pts = np.concatenate([xs, ys], axis=1) * 2.0
     for log_proportion, mean, chol in zip(*unpack_params(params)):
         cur_pts = mean + np.dot(circle_pts, chol)
         ax.plot(cur_pts[:, 0], cur_pts[:, 1], '-')
コード例 #6
0
def build_toy_dataset(D=1, n_data=20, noise_std=0.1):
    rs = npr.RandomState(0)
    inputs  = np.concatenate([np.linspace(0, 3, num=n_data/2),
                              np.linspace(6, 8, num=n_data/2)])
    targets = (np.cos(inputs) + rs.randn(n_data) * noise_std) / 2.0
    inputs = (inputs - 4.0) / 2.0
    inputs  = inputs.reshape((len(inputs), D))
    return inputs, targets
コード例 #7
0
ファイル: gmm.py プロジェクト: yinyumeng/HyperParameterTuning
 def log_marginal_likelihood(params, data):
     cluster_lls = []
     for log_proportion, mean, chol in zip(*unpack_params(params)):
         cov = np.dot(chol.T, chol) + 0.000001 * np.eye(D)
         cluster_log_likelihood = log_proportion + mvn.logpdf(data, mean, cov)
         cluster_lls.append(np.expand_dims(cluster_log_likelihood, axis=0))
     cluster_lls = np.concatenate(cluster_lls, axis=0)
     return np.sum(logsumexp(cluster_lls, axis=0))
コード例 #8
0
 def plot_isocontours(ax, func, xlimits=[-2, 2], ylimits=[-4, 2], numticks=101):
     x = np.linspace(*xlimits, num=numticks)
     y = np.linspace(*ylimits, num=numticks)
     X, Y = np.meshgrid(x, y)
     zs = func(np.concatenate([np.atleast_2d(X.ravel()), np.atleast_2d(Y.ravel())]).T)
     Z = zs.reshape(X.shape)
     plt.contour(X, Y, Z)
     ax.set_yticks([])
     ax.set_xticks([])
コード例 #9
0
def plot_matrix(ax, r, g, b, t, render=False):
    if ax:
        plt.cla()
        ax.imshow(np.concatenate((r[...,np.newaxis], g[...,np.newaxis], b[...,np.newaxis]), axis=2))
        ax.set_xticks([])
        ax.set_yticks([])
        plt.draw()
        if render:
            plt.savefig('step{0:03d}.png'.format(t), bbox_inches='tight')
        plt.pause(0.001)
コード例 #10
0
ファイル: gmm.py プロジェクト: yinyumeng/HyperParameterTuning
 def unpack_params(params):
     """Unpacks parameter vector into the proportions, means and covariances
     of each mixture component.  The covariance matrices are parametrized by
     their Cholesky decompositions."""
     log_proportions    = parser.get(params, 'log proportions')
     normalized_log_proportions = log_proportions - logsumexp(log_proportions)
     means              = parser.get(params, 'means')
     lower_tris = np.tril(parser.get(params, 'lower triangles'), k=-1)
     diag_chols = np.exp( parser.get(params, 'log diagonals'))
     chols = []
     for lower_tri, diag in zip(lower_tris, diag_chols):
         chols.append(np.expand_dims(lower_tri + np.diag(diag), 0))
     chols = np.concatenate(chols, axis=0)
     return normalized_log_proportions, means, chols
コード例 #11
0
        zs = func(np.concatenate([np.atleast_2d(X.ravel()), np.atleast_2d(Y.ravel())]).T)
        Z = zs.reshape(X.shape)
        plt.contour(X, Y, Z)
        ax.set_yticks([])
        ax.set_xticks([])

    # Set up figure.
    fig = plt.figure(figsize=(8, 8), facecolor="white")
    ax = fig.add_subplot(111, frameon=False)
    plt.ion()
    plt.show(block=False)

    def callback(params, t, g):
        print("Iteration {} lower bound {}".format(t, -objective(params, t)))

        plt.cla()
        target_distribution = lambda x: np.exp(log_posterior(x, t))
        plot_isocontours(ax, target_distribution)

        mean, log_std = unpack_params(params)
        variational_contour = lambda x: mvn.pdf(x, mean, np.diag(np.exp(2 * log_std)))
        plot_isocontours(ax, variational_contour)
        plt.draw()
        plt.pause(1.0 / 30.0)

    print("Optimizing variational parameters...")
    init_mean = -1 * np.ones(D)
    init_log_std = -5 * np.ones(D)
    init_var_params = np.concatenate([init_mean, init_log_std])
    variational_params = adam(gradient, init_var_params, step_size=0.1, num_iters=2000, callback=callback)
コード例 #12
0
ファイル: rnn.py プロジェクト: yinyumeng/HyperParameterTuning
def activations(weights, *args):
    cat_state = np.concatenate(args + (np.ones((args[0].shape[0],1)),), axis=1)
    return np.dot(cat_state, weights)