コード例 #1
0
    def _search(self, u, start_dim, total_dim, n_add):
        """Search the graph for widening the layers.

        Args:
            u: The starting node identifier.
            start_dim: The position to insert the additional dimensions.
            total_dim: The total number of dimensions the layer has before widening.
            n_add: The number of dimensions to add.
        """
        if (u, start_dim, total_dim, n_add) in self.vis:
            return
        self.vis[(u, start_dim, total_dim, n_add)] = True
        for v, layer_id in self.adj_list[u]:
            layer = self.layer_list[layer_id]

            if is_layer(layer, 'Conv'):
                new_layer = wider_next_conv(layer, start_dim, total_dim, n_add,
                                            self.weighted)
                self._replace_layer(layer_id, new_layer)

            elif is_layer(layer, 'Dense'):
                new_layer = wider_next_dense(layer, start_dim, total_dim,
                                             n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)

            elif is_layer(layer, 'BatchNormalization'):
                new_layer = wider_bn(layer, start_dim, total_dim, n_add,
                                     self.weighted)
                self._replace_layer(layer_id, new_layer)
                self._search(v, start_dim, total_dim, n_add)

            elif is_layer(layer, 'Concatenate'):
                if self.layer_id_to_input_node_ids[layer_id][1] == u:
                    # u is on the right of the concat
                    # next_start_dim += next_total_dim - total_dim
                    left_dim = self._upper_layer_width(
                        self.layer_id_to_input_node_ids[layer_id][0])
                    next_start_dim = start_dim + left_dim
                    next_total_dim = total_dim + left_dim
                else:
                    next_start_dim = start_dim
                    next_total_dim = total_dim + self._upper_layer_width(
                        self.layer_id_to_input_node_ids[layer_id][1])
                self._search(v, next_start_dim, next_total_dim, n_add)

            else:
                self._search(v, start_dim, total_dim, n_add)

        for v, layer_id in self.reverse_adj_list[u]:
            layer = self.layer_list[layer_id]
            if is_layer(layer, 'Conv'):
                new_layer = wider_pre_conv(layer, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)
            elif is_layer(layer, 'Dense'):
                new_layer = wider_pre_dense(layer, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)
            elif is_layer(layer, 'Concatenate'):
                continue
            else:
                self._search(v, start_dim, total_dim, n_add)
コード例 #2
0
ファイル: graph.py プロジェクト: karolmajek/autokeras
    def _search(self, u, start_dim, total_dim, n_add):
        """Search the graph for widening the layers.

        Args:
            u: The starting node identifier.
            start_dim: The position to insert the additional dimensions.
            total_dim: The total number of dimensions the layer has before widening.
            n_add: The number of dimensions to add.
        """
        if (u, start_dim, total_dim, n_add) in self.vis:
            return
        self.vis[(u, start_dim, total_dim, n_add)] = True
        for v, layer_id in self.adj_list[u]:
            layer = self.layer_list[layer_id]

            if is_layer(layer, 'Conv'):
                new_layer = wider_next_conv(layer, start_dim, total_dim, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)

            elif is_layer(layer, 'Dense'):
                new_layer = wider_next_dense(layer, start_dim, total_dim, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)

            elif is_layer(layer, 'BatchNormalization'):
                new_layer = wider_bn(layer, start_dim, total_dim, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)
                self._search(v, start_dim, total_dim, n_add)

            elif is_layer(layer, 'Concatenate'):
                if self.layer_id_to_input_node_ids[layer_id][1] == u:
                    # u is on the right of the concat
                    # next_start_dim += next_total_dim - total_dim
                    left_dim = self._upper_layer_width(self.layer_id_to_input_node_ids[layer_id][0])
                    next_start_dim = start_dim + left_dim
                    next_total_dim = total_dim + left_dim
                else:
                    next_start_dim = start_dim
                    next_total_dim = total_dim + self._upper_layer_width(self.layer_id_to_input_node_ids[layer_id][1])
                self._search(v, next_start_dim, next_total_dim, n_add)

            else:
                self._search(v, start_dim, total_dim, n_add)

        for v, layer_id in self.reverse_adj_list[u]:
            layer = self.layer_list[layer_id]
            if is_layer(layer, 'Conv'):
                new_layer = wider_pre_conv(layer, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)
            elif is_layer(layer, 'Dense'):
                new_layer = wider_pre_dense(layer, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)
            elif is_layer(layer, 'Concatenate'):
                continue
            else:
                self._search(v, start_dim, total_dim, n_add)
コード例 #3
0
ファイル: graph.py プロジェクト: bradbann/autokeras
    def to_wider_model(self, pre_layer_id, n_add):
        """Widen the last dimension of the output of the pre_layer.

        Args:
            pre_layer_id: A convolutional layer or dense layer.
            n_add: The number of dimensions to add.

        Returns:
            A new Keras model with the widened layers.
        """
        self.operation_history.append(('to_wider_model', pre_layer_id, n_add))
        pre_layer = self.layer_list[pre_layer_id]
        output_id = self.layer_id_to_output_node_ids[pre_layer_id][0]
        dim = layer_width(pre_layer)
        if is_layer(pre_layer, 'Conv'):
            new_layer = wider_pre_conv(pre_layer, n_add, self.weighted)
            self._replace_layer(pre_layer_id, new_layer)
        else:
            new_layer = wider_pre_dense(pre_layer, n_add, self.weighted)
            self._replace_layer(pre_layer_id, new_layer)
        self._search_next(output_id, dim, dim, n_add)
コード例 #4
0
ファイル: graph.py プロジェクト: bradbann/autokeras
    def _search_pre(self, u, start_dim, total_dim, n_add):
        """Search upward the graph for widening the layers.

        Args:
            u: The starting node identifier.
            start_dim: The dimension to insert the additional dimensions.
            total_dim: The total number of dimensions the layer has before widening.
            n_add: The number of dimensions to add.
        """
        if self.pre_vis[u]:
            return
        self.pre_vis[u] = True
        self._search_next(u, start_dim, total_dim, n_add)
        for v, layer_id in self.reverse_adj_list[u]:
            layer = self.layer_list[layer_id]
            if is_layer(layer, 'Conv'):
                new_layer = wider_pre_conv(layer, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)
            elif is_layer(layer, 'Dense'):
                new_layer = wider_pre_dense(layer, n_add, self.weighted)
                self._replace_layer(layer_id, new_layer)
            elif is_layer(layer, 'BatchNormalization'):
                self._search_pre(v, start_dim, total_dim, n_add)
            elif is_layer(layer, 'Concatenate'):
                if self.layer_id_to_input_node_ids[layer_id][1] == v:
                    # v is on the right
                    other_branch_v = self.layer_id_to_input_node_ids[layer_id][
                        0]
                    if self.pre_vis[other_branch_v]:
                        # The other branch is already been widen, which means the widen for upper part of this concat
                        #  layer is done.
                        continue
                    pre_total_dim = self._upper_layer_width(v)
                    pre_start_dim = start_dim - (total_dim - pre_total_dim)
                    self._search_pre(v, pre_start_dim, pre_total_dim, n_add)
            else:
                self._search_pre(v, start_dim, total_dim, n_add)
コード例 #5
0
 def _wider_pre_conv(self, layer, n_add):
     return wider_pre_conv(layer, n_add)