def predict(self, x, batch_size=32, verbose=1, **kwargs): """Predict the output for a given testing data. # Arguments x: Any allowed types according to the input node. Testing data. batch_size: Number of samples per batch. If unspecified, batch_size will default to 32. verbose: Verbosity mode. 0 = silent, 1 = progress bar. Controls the verbosity of [keras.Model.predict](https://tensorflow.org/api_docs/python/tf/keras/Model#predict) **kwargs: Any arguments supported by keras.Model.predict. # Returns A list of numpy.ndarray objects or a single numpy.ndarray. The predicted results. """ if isinstance(x, tf.data.Dataset) and self._has_y(x): x = x.map(lambda x, y: x) self._check_data_format((x, None), predict=True) dataset = self._adapt(x, self.inputs, batch_size) pipeline = self.tuner.get_best_pipeline() model = self.tuner.get_best_model() dataset = pipeline.transform_x(dataset) dataset = tf.data.Dataset.zip((dataset, dataset)) y = model.predict(dataset, **kwargs) y = utils.predict_with_adaptive_batch_size(model=model, batch_size=batch_size, x=dataset, verbose=verbose, **kwargs) return pipeline.postprocess(y)
def predict(self, x, batch_size=32, **kwargs): """Predict the output for a given testing data. # Arguments x: Any allowed types according to the input node. Testing data. **kwargs: Any arguments supported by keras.Model.predict. # Returns A list of numpy.ndarray objects or a single numpy.ndarray. The predicted results. """ if isinstance(x, tf.data.Dataset): if self._has_y(x): x = x.map(lambda x, y: x) self._check_data_format((x, None), predict=True) dataset = self._adapt(x, self.inputs, batch_size) pipeline = self.tuner.get_best_pipeline() model = self.tuner.get_best_model() dataset = pipeline.transform_x(dataset) y = model.predict(dataset, **kwargs) y = utils.predict_with_adaptive_batch_size(model=model, batch_size=batch_size, x=dataset, **kwargs) return pipeline.postprocess(y)