コード例 #1
0
    def action(self, state):
        """ Returns an action for a given state.
        Public handle to function.
        """
        # save state
        if self._logging_dir is not None:
            policy_id = utils.gen_experiment_id()
            self._policy_dir = os.path.join(self._logging_dir,
                                            'policy_output_%s' % (policy_id))
            while os.path.exists(self._policy_dir):
                policy_id = utils.gen_experiment_id()
            self._policy_dir = os.path.join(self._logging_dir,
                                            'policy_output_%s' % (policy_id))
            os.mkdir(self._policy_dir)
            state_dir = os.path.join(self._policy_dir, 'state')
            state.save(state_dir)

        # plan action
        action = self._action(state)

        # save action
        if self._logging_dir is not None:
            action_dir = os.path.join(self._policy_dir, 'action')
            action.save(action_dir)
        return action
コード例 #2
0
def benchmark_bin_picking_policy(policy,
                                 # input_dataset_path,
                                 # heap_ids,
                                 # timesteps,
                                 # output_dataset_path,
                                 config,
                                 # excluded_heaps_file):
                                 ):
    """ Benchmark a bin picking policy.

    Parameters
    ----------
    policy : :obj:`Policy`
        policy to roll out
    input_dataset_path : str
        path to the input dataset
    heap_ids : list
        integer identifiers for the heaps to re-run
    timesteps : list
        integer timesteps to seed the simulation from
    output_dataset_path : str
        path to store the results
    config : dict
        dictionary-like objects containing parameters of the simulator and visualization
    """
    # read subconfigs
    vis_config = config['vis']
    dataset_config = config['dataset']

    # read parameters
    fully_observed = config['fully_observed']
    steps_per_test_case = config['steps_per_test_case']
    rollouts_per_garbage_collect = config['rollouts_per_garbage_collect']
    debug = config['debug']
    im_height = config['state_space']['camera']['im_height']
    im_width = config['state_space']['camera']['im_width']
    max_obj_per_pile = config['state_space']['object']['max_obj_per_pile']

    if debug:
        random.seed(SEED)
        np.random.seed(SEED)

    # read ids
    # if len(heap_ids) != len(timesteps):
    #     raise ValueError('Must provide same number of heap ids and timesteps')
    # num_rollouts = len(heap_ids)
    num_rollouts = 1
        
    # set dataset params
    tensor_config = dataset_config['tensors']
    fields_config = tensor_config['fields']
    # fields_config['color_ims']['height'] = im_height
    # fields_config['color_ims']['width'] = im_width
    # fields_config['depth_ims']['height'] = im_height
    # fields_config['depth_ims']['width'] = im_width
    fields_config['obj_poses']['height'] = POSE_DIM * max_obj_per_pile
    fields_config['obj_coms']['height'] = POINT_DIM * max_obj_per_pile
    fields_config['obj_ids']['height'] = max_obj_per_pile
    fields_config['bin_distances']['height'] = max_obj_per_pile
    # matrix has (n choose 2) elements in it
    max_distance_matrix_length = int(comb(max_obj_per_pile, 2))
    fields_config['distance_matrix']['height'] = max_distance_matrix_length

    # sample a process id
    proc_id = utils.gen_experiment_id()
    # if not os.path.exists(output_dataset_path):
    #     try:
    #         os.mkdir(output_dataset_path)
    #     except:
    #         logging.warning('Failed to create %s. The dataset path may have been created simultaneously by another process' %(dataset_path))
    # proc_id = 'clustering_2'
    # output_dataset_path = os.path.join(output_dataset_path, 'dataset_%s' %(proc_id))

    # open input dataset
    # logging.info('Opening input dataset: %s' % input_dataset_path)
    # input_dataset = TensorDataset.open(input_dataset_path)
    
    # open output_dataset
    # logging.info('Opening output dataset: %s' % output_dataset_path)
    # dataset = TensorDataset(output_dataset_path, tensor_config)
    # datapoint = dataset.datapoint_template

    # setup logging
    # experiment_log_filename = os.path.join(output_dataset_path, 'dataset_generation.log')
    # formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    # hdlr = logging.FileHandler(experiment_log_filename)
    # hdlr.setFormatter(formatter)
    # logging.getLogger().addHandler(hdlr)
    # config.save(os.path.join(output_dataset_path, 'dataset_generation_params.yaml'))
    
    # key mappings
    # we add the empty string as a mapping because if you don't evaluate dexnet on the 'before' state of the push
    obj_id = 1
    obj_ids = {'': 0}
    action_ids = {
        'ParallelJawGraspAction': 0,
        'SuctionGraspAction': 1,
        'LinearPushAction': 2
    }
    
    # add action ids
    reverse_action_ids = utils.reverse_dictionary(action_ids)
    # dataset.add_metadata('action_ids', reverse_action_ids)
    
    # perform rollouts
    n = 0
    rollout_start = time.time()
    current_heap_id = None
    while n < num_rollouts:
        # create env
        create_start = time.time()
        bin_picking_env = GraspingEnv(config, vis_config)
        create_stop = time.time()
        logging.info('Creating env took %.3f sec' %(create_stop-create_start))

        # perform rollouts
        rollouts_remaining = num_rollouts - n
        for i in range(min(rollouts_per_garbage_collect, rollouts_remaining)):
            # log current rollout
            logging.info('\n')
            if n % vis_config['log_rate'] == 0:
                logging.info('Rollout: %03d' %(n))

            try:    
                # mark rollout status
                data_saved = False
                num_steps = 0
                
                # read heap id
                # heap_id = heap_ids[n]
                # timestep = timesteps[n]
                # while heap_id == current_heap_id:# or heap_id < 81:#[226, 287, 325, 453, 469, 577, 601, 894, 921]: 26
                #     n += 1
                #     heap_id = heap_ids[n]
                #     timestep = timesteps[n]
                push_logger = logging.getLogger('push')
                # push_logger.info('~')
                # push_logger.info('Heap ID %d' % heap_id)
                # current_heap_id = heap_id
                
                # reset env
                reset_start = time.time()
                # bin_picking_env.reset_from_dataset(input_dataset,
                #                                    heap_id,
                #                                    timestep)
                bin_picking_env.reset()
                state = bin_picking_env.state
                environment = bin_picking_env.environment
                if fully_observed:
                    observation = None
                else:
                    observation = bin_picking_env.observation
                policy.set_environment(environment) 
                reset_stop = time.time()

                # add objects to mapping
                for obj_key in state.obj_keys:
                    if obj_key not in obj_ids.keys():
                        obj_ids[obj_key] = obj_id
                        obj_id += 1
                    push_logger.info(obj_key)
                # save id mappings
                reverse_obj_ids = utils.reverse_dictionary(obj_ids)
                # dataset.add_metadata('obj_ids', reverse_obj_ids)
                        
                # store datapoint env params
                # datapoint['heap_ids'] = current_heap_id
                # datapoint['camera_poses'] = environment.camera.T_camera_world.vec
                # datapoint['camera_intrs'] = environment.camera.intrinsics.vec
                # datapoint['robot_poses'] = environment.robot.T_robot_world.vec
            
                # render
                if vis_config['initial_state']:
                    vis3d.figure()
                    bin_picking_env.render_3d_scene()
                    vis3d.pose(environment.robot.T_robot_world)
                    vis3d.show(starting_camera_pose=CAMERA_POSE)
            
                # observe
                if vis_config['initial_obs']:
                    vis2d.figure()
                    vis2d.imshow(observation, auto_subplot=True)
                    vis2d.show()

                # rollout on current satte
                done = False
                failed = False
                # if isinstance(policy, SingulationFullRolloutPolicy):
                #     policy.reset_num_failed_grasps()
                while not done:
                    if vis_config['step_stats']:
                        logging.info('Heap ID: %s' % heap_id)
                        logging.info('Timestep: %s' % bin_picking_env.timestep)

                    # get action
                    policy_start = time.time()
                    if fully_observed:
                        action = policy.action(state)
                    else:
                        action = policy.action(observation)
                    policy_stop = time.time()
                    logging.info('Composite Policy took %.3f sec' %(policy_stop-policy_start))

                    # render scene before
                    if vis_config['action']:
                        #gripper = bin_picking_env.gripper(action)
                        vis3d.figure()
			            # GRASPINGENV
                        # bin_picking_env.render_3d_scene(render_camera=False, workspace_objs_wireframe=False)
                        bin_picking_env.render_3d_scene()
                        if isinstance(action, GraspAction):
                            vis3d.gripper(gripper, action.grasp(gripper))
                        #if isinstance(action, LinearPushAction):
                        else:
                            # # T_start_world = action.T_begin_world * gripper.T_mesh_grasp
                            # # T_end_world = action.T_end_world * gripper.T_mesh_grasp
                            # #start_point = action.T_begin_world.translation
                            # start_point = action['start']
                            # #end_point = action.T_end_world.translation
                            # end_point = action['end']
                            # vec = (end_point - start_point) / np.linalg.norm(end_point-start_point) if np.linalg.norm(end_point-start_point) > 0 else end_point-start_point 
                            # #h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(vec)
                            # #h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(vec)
                            # arrow_len = np.linalg.norm(start_point - end_point)
                            # h1 = (end_point - start_point + np.array([0,0,arrow_len])) / (arrow_len*math.sqrt(2))
                            # h2 = (end_point - start_point - np.array([0,0,arrow_len])) / (arrow_len*math.sqrt(2))
                            # shaft_points = [start_point, end_point]
                            # head_points = [end_point - 0.03*h2, end_point, end_point - 0.03*h1]
                            # #vis3d.plot3d(shaft_points, color=[0,0,1])
                            # #vis3d.plot3d(head_points, color=[0,0,1])
                            
                            # Displaying all potential topple points
                            for vertex, prob in zip(action['vertices'], action['probabilities']):
                                color = np.array([min(1, 2*(1-prob)), min(2*prob, 1), 0])
                                vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)

                            for vertex in action['bottom_points']:
                                color = np.array([0,0,1])
                                vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(action['com'], 'world'), scale=.005, color=np.array([0,0,1]))
                            vis3d.points(Point(np.array([0,0,0]), 'world'), scale=.005, color=np.array([0,1,0]))
                            
                            #set_of_lines = action['set_of_lines']
                            #for i, line in enumerate(set_of_lines):
                            #    color = str(bin(i+1))[2:].zfill(3)
                            #    color = np.array([color[2], color[1], color[0]])
                            #    vis3d.plot3d(line, color=color)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)

                        # Show 
                        vis3d.figure()
                        bin_picking_env.render_3d_scene()
                        final_pose_ind = action['final_pose_ind'] / np.amax(action['final_pose_ind'])
                        for vertex, final_pose_ind in zip(action['vertices'], final_pose_ind):
                            color = np.array([0, min(1, 2*(1-prob)), min(2*prob, 1)])
                            vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)



                        color=np.array([0,0,1])
                        original_pose = state.obj.T_obj_world
                        pose_num = 0
                        for pose, edge_point1, edge_point2 in zip(action['final_poses'], action['bottom_points'], np.roll(action['bottom_points'],-1,axis=0)):
                            print 'Pose:', pose_num
                            pose_num += 1
                            pose = pose.T_obj_table
                            vis3d.figure()
                            state.obj.T_obj_world = original_pose
                            bin_picking_env.render_3d_scene()
                            vis3d.points(Point(edge_point1, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(edge_point2, 'world'), scale=.0005, color=color)
                            vis3d.show(starting_camera_pose=CAMERA_POSE)

                            vis3d.figure()
                            state.obj.T_obj_world = pose
                            bin_picking_env.render_3d_scene()
                            vis3d.points(Point(edge_point1, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(edge_point2, 'world'), scale=.0005, color=color)
                            vis3d.show(starting_camera_pose=CAMERA_POSE)
                         #vis3d.save('/home/mjd3/Pictures/weird_pics/%d_%d_before.png' % (heap_id, bin_picking_env.timestep), starting_camera_pose=CAMERA_POSE)
                    # store datapoint pre-step data
                    j = 0
                    obj_poses = np.zeros(fields_config['obj_poses']['height'])
                    obj_coms = np.zeros(fields_config['obj_coms']['height'])
                    obj_ids_vec = np.iinfo(np.uint32).max * np.ones(fields_config['obj_ids']['height'])
                    for obj_state in state.obj_states:
                        obj_poses[j*POSE_DIM:(j+1)*POSE_DIM] = obj_state.T_obj_world.vec
                        obj_coms[j*POINT_DIM:(j+1)*POINT_DIM] = obj_state.center_of_mass
                        obj_ids_vec[j] = obj_ids[obj_state.key]
                        j += 1
                    action_poses = np.zeros(fields_config['action_poses']['height'])
                    #if isinstance(action, GraspAction):
                    #    action_poses[:7] = action.T_grasp_world.vec
                    #else:
                    #    action_poses[:7] = action.T_begin_world.vec
                    #    action_poses[7:] = action.T_end_world.vec

                    # if isinstance(policy, SingulationMetricsCompositePolicy):
                    #     actual_distance_matrix_length = int(comb(len(state.objs), 2))
                    #     bin_distances = np.append(action.metadata['bin_distances'], 
                    #                               np.zeros(max_obj_per_pile-len(state.objs))
                    #                             )
                    #     distance_matrix = np.append(action.metadata['distance_matrix'], 
                    #                                 np.zeros(max_distance_matrix_length - actual_distance_matrix_length)
                    #                             )
                    #     datapoint['bin_distances'] = bin_distances
                    #     datapoint['distance_matrix'] = distance_matrix
                    #     datapoint['T_begin_world'] = action.T_begin_world.matrix
                    #     datapoint['T_end_world'] = action.T_end_world.matrix
                    #     datapoint['parallel_jaw_best_q_value'] = action.metadata['parallel_jaw_best_q_value']
                    #     # datapoint['parallel_jaw_mean_q_value'] = action.metadata['parallel_jaw_mean_q_value']
                    #     # datapoint['parallel_jaw_num_grasps'] = action.metadata['parallel_jaw_num_grasps']
                    #     datapoint['suction_best_q_value'] = action.metadata['suction_best_q_value']
                    #     # datapoint['suction_mean_q_value'] = action.metadata['suction_mean_q_value']
                    #     # datapoint['suction_num_grasps'] = action.metadata['suction_num_grasps']
                    #     # logging.info('Suction Q: %f, PJ Q: %f' % (action.metadata['suction_q_value'], action.metadata['parallel_jaw_q_value']))
                    #     # datapoint['obj_index'] = action.metadata['obj_index']

                    #     # datapoint['parallel_jaw_best_q_value_single'] = action.metadata['parallel_jaw_best_q_value_single']
                    #     # datapoint['suction_best_q_value_single'] = action.metadata['suction_best_q_value_single']
                    #     datapoint['singulated_obj_index'] = action.metadata['singulated_obj_index']
                    #     datapoint['parallel_jaw_grasped_obj_index'] = obj_ids[action.metadata['parallel_jaw_grasped_obj_key']]
                    #     datapoint['suction_grasped_obj_index'] = obj_ids[action.metadata['suction_grasped_obj_key']]
                    # else:
                    #     datapoint['bin_distances'] = np.zeros(max_obj_per_pile)
                    #     datapoint['distance_matrix'] = np.zeros(max_distance_matrix_length)
                    #     datapoint['T_begin_world'] = np.zeros((4,4))
                    #     datapoint['T_end_world'] = np.zeros((4,4))
                    #     datapoint['parallel_jaw_best_q_value'] = -1
                    #     datapoint['suction_best_q_value'] = -1
                    #     datapoint['singulated_obj_index'] = -1
                    #     datapoint['parallel_jaw_grasped_obj_index'] = -1
                    #     datapoint['suction_grasped_obj_index'] = -1

                    # policy_id = 0
                    # if 'policy_id' in action.metadata.keys():
                    #     policy_id = action.metadata['policy_id']
                    # greedy_q_value = 0
                    # if 'greedy_q_value' in action.metadata.keys():
                    #     greedy_q_value = action.metadata['greedy_q_value']
                        
                    # datapoint['timesteps'] = bin_picking_env.timestep
                    # datapoint['obj_poses'] = obj_poses
                    # datapoint['obj_coms'] = obj_coms
                    # datapoint['obj_ids'] = obj_ids_vec
                    # # if bin_picking_env.render_mode == RenderMode.RGBD:
                    # #     color_data = observation.color.raw_data
                    # #     depth_data = observation.depth.raw_data
                    # # elif bin_picking_env.render_mode == RenderMode.DEPTH:
                    # #     color_data = np.zeros(observation.shape).astype(np.uint8)
                    # #     depth_data = observation.raw_data
                    # # elif bin_picking_env.render_mode == RenderMode.COLOR:
                    # #     color_data = observation.raw_data
                    # #     depth_data = np.zeros(observation.shape)
                    # # datapoint['color_ims'] = color_data
                    # # datapoint['depth_ims'] = depth_data
                    # datapoint['action_ids'] = action_ids[type(action).__name__]
                    # datapoint['action_poses'] = action_poses
                    # datapoint['policy_ids'] = policy_id
                    # datapoint['greedy_q_values'] = greedy_q_value
                    # datapoint['pred_q_values'] = action.q_value
                    
                    # step the policy
                    #observation, reward, done, info = bin_picking_env.step(action)
                    #state = bin_picking_env.state
                    state.objs[0].T_obj_world = action['final_state']

                    # if isinstance(policy, SingulationFullRolloutPolicy):
                    #     policy.grasp_succeeds(info['grasp_succeeds'])
        
                    # debugging info
                    if vis_config['step_stats']:
                        logging.info('Action type: %s' %(type(action).__name__))
                        logging.info('Action Q-value: %.3f' %(action.q_value))
                        logging.info('Reward: %d' %(reward))
                        logging.info('Policy took %.3f sec' %(policy_stop-policy_start))
                        logging.info('Num objects remaining: %d' %(bin_picking_env.num_objects))
                        if info['cleared_pile']:
                            logging.info('Cleared pile!')
                        
                    # # store datapoint post-step data
                    # datapoint['rewards'] = reward
                    # datapoint['grasp_metrics'] = info['grasp_metric']
                    # datapoint['collisions'] = 1 * info['collides']
                    # datapoint['collisions_with_env'] = 1 * info['collides_with_static_obstacles']
                    # datapoint['grasped_obj_ids'] = obj_ids[info['grasped_obj_key']]
                    # datapoint['cleared_pile'] = 1 * info['cleared_pile']

                    # # store datapoint
                    # # dataset.add(datapoint)
                    # data_saved = True    
                    
                    # render observation
                    if vis_config['obs']:
                        vis2d.figure()
                        vis2d.imshow(observation, auto_subplot=True)
                        vis2d.show()
        
                    # render scene after
                    if vis_config['state']:
                        vis3d.figure()
                        bin_picking_env.render_3d_scene(render_camera=False)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)
                        # vis3d.save('/home/mjd3/Pictures/weird_pics/%d_%d_after.png' % (heap_id, bin_picking_env.timestep), starting_camera_pose=CAMERA_POSE)
                    state.objs[0].T_obj_world = action['tmpR']
                    vis3d.figure()
                    bin_picking_env.render_3d_scene(render_camera=False)
                    vis3d.show(starting_camera_pose=CAMERA_POSE)
                    state.objs[0].T_obj_world = action['final_state']
                    # increment the number of steps
                    num_steps += 1
                    if num_steps >= steps_per_test_case:
                        done = True
                        
            except NoActionFoundException as e:
                logging.warning('The policy failed to plan an action!')
                done = True                    
            except Exception as e:
                # log an error
                logging.warning('Rollout failed!')
                logging.warning('%s' %(str(e)))
                logging.warning(traceback.print_exc())
                # if debug:
                #     raise
                
                # reset env
                del bin_picking_env
                gc.collect()
                bin_picking_env = BinPickingEnv(config, vis_config)

                # terminate current rollout
                failed = True
                done = True

            # update test case id
            n += 1
            # dataset.flush()
            # logging.info("\n\nflushing")
            # logging.info("exiting")
            # sys.exit()
                
        # garbage collect
        del bin_picking_env
        gc.collect()

    # return the dataset 
    # dataset.flush()

    # log time
    rollout_stop = time.time()
    logging.info('Rollouts took %.3f sec' %(rollout_stop-rollout_start))

    return dataset
コード例 #3
0
    def test_single_read_write(self):
        # seed
        np.random.seed(SEED)
        random.seed(SEED)

        # open dataset
        create_successful = True
        try:
            dataset = TensorDataset(TEST_TENSOR_DATASET_NAME, TENSOR_CONFIG)
        except:
            create_successful = False
        self.assertTrue(create_successful)

        # check field names
        write_datapoint = dataset.datapoint_template
        for field_name in write_datapoint.keys():
            self.assertTrue(field_name in dataset.field_names)

        # add the datapoint
        write_datapoint['float_value'] = np.random.rand()
        write_datapoint['int_value'] = int(100 * np.random.rand())
        write_datapoint['str_value'] = utils.gen_experiment_id()
        write_datapoint['vector_value'] = np.random.rand(HEIGHT)
        write_datapoint['matrix_value'] = np.random.rand(HEIGHT, WIDTH)
        write_datapoint['image_value'] = np.random.rand(
            HEIGHT, WIDTH, CHANNELS)
        dataset.add(write_datapoint)

        # check num datapoints
        self.assertTrue(dataset.num_datapoints == 1)

        # add metadata
        metadata_num = np.random.rand()
        dataset.add_metadata('test', metadata_num)

        # check written arrays
        dataset.flush()
        for field_name in dataset.field_names:
            filename = os.path.join(TEST_TENSOR_DATASET_NAME, 'tensors',
                                    '%s_00000.npz' % (field_name))
            value = np.load(filename)['arr_0']
            if isinstance(value[0], str):
                self.assertTrue(value[0] == write_datapoint[field_name])
            else:
                self.assertTrue(
                    np.allclose(value[0], write_datapoint[field_name]))

        # re-open the dataset
        del dataset
        dataset = TensorDataset.open(TEST_TENSOR_DATASET_NAME)

        # read metadata
        self.assertTrue(np.allclose(dataset.metadata['test'], metadata_num))

        # read datapoint
        read_datapoint = dataset.datapoint(0)
        for field_name in dataset.field_names:
            if isinstance(read_datapoint[field_name], str):
                self.assertTrue(
                    read_datapoint[field_name] == write_datapoint[field_name])
            else:
                self.assertTrue(
                    np.allclose(read_datapoint[field_name],
                                write_datapoint[field_name]))

        # check iterator
        for read_datapoint in dataset:
            for field_name in dataset.field_names:
                if isinstance(read_datapoint[field_name], str):
                    self.assertTrue(read_datapoint[field_name] ==
                                    write_datapoint[field_name])
                else:
                    self.assertTrue(
                        np.allclose(read_datapoint[field_name],
                                    write_datapoint[field_name]))

        # read individual fields
        for field_name in dataset.field_names:
            read_datapoint = dataset.datapoint(0, field_names=[field_name])
            if isinstance(read_datapoint[field_name], str):
                self.assertTrue(
                    read_datapoint[field_name] == write_datapoint[field_name])
            else:
                self.assertTrue(
                    np.allclose(read_datapoint[field_name],
                                write_datapoint[field_name]))

        # re-open the dataset in write-only
        del dataset
        dataset = TensorDataset.open(TEST_TENSOR_DATASET_NAME,
                                     access_mode=READ_WRITE_ACCESS)

        # delete datapoint
        dataset.delete_last()

        # check that the dataset is correct
        self.assertTrue(dataset.num_datapoints == 0)
        self.assertTrue(dataset.num_tensors == 0)
        for field_name in dataset.field_names:
            filename = os.path.join(TEST_TENSOR_DATASET_NAME, 'tensors',
                                    '%s_00000.npz' % (field_name))
            self.assertFalse(os.path.exists(filename))

        # remove dataset
        if os.path.exists(TEST_TENSOR_DATASET_NAME):
            shutil.rmtree(TEST_TENSOR_DATASET_NAME)
コード例 #4
0
def finetune_classification_cnn(config):
    """ Main function. """
    # read params
    dataset = config['dataset']
    x_names = config['x_names']
    y_name = config['y_name']
    model_dir = config['model_dir']
    debug = config['debug']

    num_classes = None
    if 'num_classes' in config.keys():
        num_classes = config['num_classes']

    batch_size = config['training']['batch_size']
    train_pct = config['training']['train_pct']
    model_save_period = config['training']['model_save_period']

    data_aug_config = config['data_augmentation']
    preproc_config = config['preprocessing']
    iterator_config = config['data_iteration']
    model_config = config['model']
    base_model_config = model_config['base']
    optimization_config = config['optimization']
    train_config = config['training']

    generator_image_shape = None
    if 'image_shape' in data_aug_config.keys():
        generator_image_shape = data_aug_config['image_shape']
    optimizer_name = optimization_config['optimizer']

    model_params = {}
    if 'params' in model_config.keys():
        model_params = model_config['params']

    base_model_params = {}
    if 'params' in base_model_config.keys():
        base_model_params = base_model_config['params']

    if debug:
        seed = 108
        random.seed(seed)
        np.random.seed(seed)

    # generate model dir
    if not os.path.exists(model_dir):
        os.mkdir(model_dir)
    model_id = utils.gen_experiment_id()
    model_dir = os.path.join(model_dir, 'model_%s' % (model_id))
    if not os.path.exists(model_dir):
        os.mkdir(model_dir)
    logging.info('Saving model to %s' % (model_dir))
    latest_model_filename = os.path.join(model_dir, 'weights_{epoch:05d}.h5')
    best_model_filename = os.path.join(model_dir, 'weights.h5')

    # save config
    training_config_filename = os.path.join(model_dir, 'training_config.yaml')
    config.save(training_config_filename)

    # open dataset
    dataset = TensorDataset.open(dataset)

    # split dataset
    indices_filename = os.path.join(model_dir, 'splits.npz')
    if os.path.exists(indices_filename):
        indices = np.load(indices_filename)['arr_0'].tolist()
        train_indices = indices['train']
        val_indices = indices['val']
    else:
        train_indices, val_indices = dataset.split(train_pct)
        indices = np.array({'train': train_indices, 'val': val_indices})
        np.savez_compressed(indices_filename, indices)
    num_train = train_indices.shape[0]
    num_val = val_indices.shape[0]
    val_steps = int(np.ceil(float(num_val) / batch_size))

    # init generator
    train_generator_filename = os.path.join(model_dir,
                                            'train_preprocessor.pkl')
    val_generator_filename = os.path.join(model_dir, 'val_preprocessor.pkl')
    if os.path.exists(train_generator_filename):
        logging.info('Loading generators')
        train_generator = pkl.load(open(train_generator_filename, 'rb'))
        val_generator = pkl.load(open(val_generator_filename, 'rb'))
    else:
        logging.info('Fitting generator')
        train_generator = TensorDataGenerator(num_classes=num_classes,
                                              **data_aug_config)
        val_generator = TensorDataGenerator(
            featurewise_center=data_aug_config['featurewise_center'],
            featurewise_std_normalization=data_aug_config[
                'featurewise_std_normalization'],
            image_shape=generator_image_shape,
            num_classes=num_classes)
        fit_start = time.time()
        train_generator.fit(dataset,
                            x_names,
                            y_name,
                            indices=train_indices,
                            **preproc_config)
        val_generator.mean = train_generator.mean
        val_generator.std = train_generator.std
        val_generator.min_output = train_generator.min_output
        val_generator.max_output = train_generator.max_output
        val_generator.num_classes = train_generator.num_classes
        fit_stop = time.time()
        logging.info('Generator fit took %.3f sec' % (fit_stop - fit_start))
        pkl.dump(train_generator, open(train_generator_filename, 'wb'))
        pkl.dump(val_generator, open(val_generator_filename, 'wb'))

    if num_classes is None:
        num_classes = int(train_generator.num_classes)

    # init iterator
    train_iterator = train_generator.flow_from_dataset(dataset,
                                                       x_names,
                                                       y_name,
                                                       indices=train_indices,
                                                       batch_size=batch_size,
                                                       **iterator_config)
    val_iterator = val_generator.flow_from_dataset(dataset,
                                                   x_names,
                                                   y_name,
                                                   indices=val_indices,
                                                   batch_size=batch_size,
                                                   **iterator_config)

    # setup model
    base_cnn = ClassificationCNN.open(base_model_config['model'],
                                      base_model_config['type'],
                                      input_name=x_names[0],
                                      **base_model_params)
    cnn = FinetunedClassificationCNN(base_cnn=base_cnn,
                                     name='dexresnet',
                                     num_classes=num_classes,
                                     output_name=y_name,
                                     im_preprocessor=val_generator,
                                     **model_params)

    # setup training
    cnn.freeze_base_cnn()
    if optimizer_name == 'sgd':
        optimizer = SGD(lr=optimization_config['lr'],
                        momentum=optimization_config['momentum'])
    elif optimizer_name == 'adam':
        optimizer = Adam(lr=optimization_config['lr'])
    else:
        raise ValueError('Optimizer %s not supported!' % (optimizer_name))
    model = cnn.model
    model.compile(optimizer=optimizer,
                  loss=optimization_config['loss'],
                  metrics=optimization_config['metrics'])

    # train
    steps_per_epoch = int(np.ceil(float(num_train) / batch_size))
    latest_model_ckpt = ModelCheckpoint(latest_model_filename,
                                        period=model_save_period)
    best_model_ckpt = ModelCheckpoint(best_model_filename,
                                      save_best_only=True,
                                      period=model_save_period)
    train_history_cb = TrainHistory(model_dir)
    callbacks = [latest_model_ckpt, best_model_ckpt, train_history_cb]
    history = model.fit_generator(
        train_iterator,
        steps_per_epoch=steps_per_epoch,
        epochs=train_config['epochs'],
        callbacks=callbacks,
        validation_data=val_iterator,
        validation_steps=val_steps,
        class_weight=train_config['class_weight'],
        use_multiprocessing=train_config['use_multiprocessing'])

    # save model
    cnn.save(model_dir)

    # save history
    history_filename = os.path.join(model_dir, 'history.pkl')
    pkl.dump(history.history, open(history_filename, 'wb'))
コード例 #5
0
    def test_multi_tensor_read_write(self):
        # seed
        np.random.seed(SEED)
        random.seed(SEED)

        # open dataset
        dataset = TensorDataset(TEST_TENSOR_DATASET_NAME, TENSOR_CONFIG)

        write_datapoints = []
        for i in range(DATAPOINTS_PER_FILE + 1):
            write_datapoint = {}
            write_datapoint['float_value'] = np.random.rand()
            write_datapoint['int_value'] = int(100 * np.random.rand())
            write_datapoint['str_value'] = utils.gen_experiment_id()
            write_datapoint['vector_value'] = np.random.rand(HEIGHT)
            write_datapoint['matrix_value'] = np.random.rand(HEIGHT, WIDTH)
            write_datapoint['image_value'] = np.random.rand(
                HEIGHT, WIDTH, CHANNELS)
            dataset.add(write_datapoint)
            write_datapoints.append(write_datapoint)

        # check num datapoints
        self.assertTrue(dataset.num_datapoints == DATAPOINTS_PER_FILE + 1)
        self.assertTrue(dataset.num_tensors == 2)

        # check read
        dataset.flush()
        del dataset
        dataset = TensorDataset.open(TEST_TENSOR_DATASET_NAME,
                                     access_mode=READ_WRITE_ACCESS)
        for i, read_datapoint in enumerate(dataset):
            write_datapoint = write_datapoints[i]
            for field_name in dataset.field_names:
                if isinstance(read_datapoint[field_name], str):
                    self.assertTrue(read_datapoint[field_name] ==
                                    write_datapoint[field_name])
                else:
                    self.assertTrue(
                        np.allclose(read_datapoint[field_name],
                                    write_datapoint[field_name]))

        for i, read_datapoint in enumerate(dataset):
            # check iterator item
            write_datapoint = write_datapoints[i]
            for field_name in dataset.field_names:
                if isinstance(read_datapoint[field_name], str):
                    self.assertTrue(read_datapoint[field_name] ==
                                    write_datapoint[field_name])
                else:
                    self.assertTrue(
                        np.allclose(read_datapoint[field_name],
                                    write_datapoint[field_name]))

            # check random item
            ind = np.random.choice(dataset.num_datapoints)
            write_datapoint = write_datapoints[ind]
            read_datapoint = dataset.datapoint(ind)
            for field_name in dataset.field_names:
                if isinstance(read_datapoint[field_name], str):
                    self.assertTrue(read_datapoint[field_name] ==
                                    write_datapoint[field_name])
                else:
                    self.assertTrue(
                        np.allclose(read_datapoint[field_name],
                                    write_datapoint[field_name]))

        # check deletion
        dataset.delete_last()
        self.assertTrue(dataset.num_datapoints == DATAPOINTS_PER_FILE)
        self.assertTrue(dataset.num_tensors == 1)
        for field_name in dataset.field_names:
            filename = os.path.join(TEST_TENSOR_DATASET_NAME, 'tensors',
                                    '%s_00001.npz' % (field_name))
        dataset.add(write_datapoints[-1])
        for write_datapoint in write_datapoints:
            dataset.add(write_datapoint)
        self.assertTrue(dataset.num_datapoints == 2 *
                        (DATAPOINTS_PER_FILE + 1))
        self.assertTrue(dataset.num_tensors == 3)

        # check valid
        for i in range(dataset.num_datapoints):
            read_datapoint = dataset.datapoint(i)
            write_datapoint = write_datapoints[i % (len(write_datapoints))]
            for field_name in dataset.field_names:
                if isinstance(read_datapoint[field_name], str):
                    self.assertTrue(read_datapoint[field_name] ==
                                    write_datapoint[field_name])
                else:
                    self.assertTrue(
                        np.allclose(read_datapoint[field_name],
                                    write_datapoint[field_name]))

        # check read then write out of order
        ind = np.random.choice(DATAPOINTS_PER_FILE)
        write_datapoint = write_datapoints[ind]
        read_datapoint = dataset.datapoint(ind)
        for field_name in dataset.field_names:
            if isinstance(read_datapoint[field_name], str):
                self.assertTrue(
                    read_datapoint[field_name] == write_datapoint[field_name])
            else:
                self.assertTrue(
                    np.allclose(read_datapoint[field_name],
                                write_datapoint[field_name]))

        write_datapoint = write_datapoints[0]
        dataset.add(write_datapoint)
        read_datapoint = dataset.datapoint(dataset.num_datapoints - 1)
        for field_name in dataset.field_names:
            if isinstance(read_datapoint[field_name], str):
                self.assertTrue(
                    read_datapoint[field_name] == write_datapoint[field_name])
            else:
                self.assertTrue(
                    np.allclose(read_datapoint[field_name],
                                write_datapoint[field_name]))
        dataset.delete_last()

        # check data integrity
        for i, read_datapoint in enumerate(dataset):
            write_datapoint = write_datapoints[i % len(write_datapoints)]
            for field_name in dataset.field_names:
                if isinstance(read_datapoint[field_name], str):
                    self.assertTrue(read_datapoint[field_name] ==
                                    write_datapoint[field_name])
                else:
                    self.assertTrue(
                        np.allclose(read_datapoint[field_name],
                                    write_datapoint[field_name]))

        # delete last
        dataset.delete_last(len(write_datapoints))
        self.assertTrue(dataset.num_datapoints == DATAPOINTS_PER_FILE + 1)
        self.assertTrue(dataset.num_tensors == 2)
        for i, read_datapoint in enumerate(dataset):
            write_datapoint = write_datapoints[i]
            for field_name in dataset.field_names:
                if isinstance(read_datapoint[field_name], str):
                    self.assertTrue(read_datapoint[field_name] ==
                                    write_datapoint[field_name])
                else:
                    self.assertTrue(
                        np.allclose(read_datapoint[field_name],
                                    write_datapoint[field_name]))

        # remove dataset
        if os.path.exists(TEST_TENSOR_DATASET_NAME):
            shutil.rmtree(TEST_TENSOR_DATASET_NAME)