if "obj_ids" in dataset.metadata.keys(): # modify object ids dataset_obj_ids = dataset.metadata["obj_ids"] for k in range(datapoint["obj_ids"].shape[0]): dataset_obj_id = datapoint["obj_ids"][k] if dataset_obj_id != np.iinfo(np.uint32).max: dataset_obj_key = dataset_obj_ids[str(dataset_obj_id)] if dataset_obj_key not in obj_ids.keys(): obj_ids[dataset_obj_key] = obj_id obj_id += 1 datapoint["obj_ids"][k] = obj_ids[dataset_obj_key] # modify grasped obj id dataset_grasped_obj_id = datapoint["grasped_obj_ids"] grasped_obj_key = dataset_obj_ids[str(dataset_grasped_obj_id)] datapoint["grasped_obj_ids"] = obj_ids[grasped_obj_key] # add datapoint output_dataset.add(datapoint) # set metadata obj_ids = utils.reverse_dictionary(obj_ids) output_dataset.add_metadata("obj_ids", obj_ids) for field_name, field_data in dataset.metadata.iteritems(): if field_name not in ["obj_ids"]: output_dataset.add_metadata(field_name, field_data) # flush to disk output_dataset.flush()
def benchmark_bin_picking_policy(policy, # input_dataset_path, # heap_ids, # timesteps, # output_dataset_path, config, # excluded_heaps_file): ): """ Benchmark a bin picking policy. Parameters ---------- policy : :obj:`Policy` policy to roll out input_dataset_path : str path to the input dataset heap_ids : list integer identifiers for the heaps to re-run timesteps : list integer timesteps to seed the simulation from output_dataset_path : str path to store the results config : dict dictionary-like objects containing parameters of the simulator and visualization """ # read subconfigs vis_config = config['vis'] dataset_config = config['dataset'] # read parameters fully_observed = config['fully_observed'] steps_per_test_case = config['steps_per_test_case'] rollouts_per_garbage_collect = config['rollouts_per_garbage_collect'] debug = config['debug'] im_height = config['state_space']['camera']['im_height'] im_width = config['state_space']['camera']['im_width'] max_obj_per_pile = config['state_space']['object']['max_obj_per_pile'] if debug: random.seed(SEED) np.random.seed(SEED) # read ids # if len(heap_ids) != len(timesteps): # raise ValueError('Must provide same number of heap ids and timesteps') # num_rollouts = len(heap_ids) num_rollouts = 1 # set dataset params tensor_config = dataset_config['tensors'] fields_config = tensor_config['fields'] # fields_config['color_ims']['height'] = im_height # fields_config['color_ims']['width'] = im_width # fields_config['depth_ims']['height'] = im_height # fields_config['depth_ims']['width'] = im_width fields_config['obj_poses']['height'] = POSE_DIM * max_obj_per_pile fields_config['obj_coms']['height'] = POINT_DIM * max_obj_per_pile fields_config['obj_ids']['height'] = max_obj_per_pile fields_config['bin_distances']['height'] = max_obj_per_pile # matrix has (n choose 2) elements in it max_distance_matrix_length = int(comb(max_obj_per_pile, 2)) fields_config['distance_matrix']['height'] = max_distance_matrix_length # sample a process id proc_id = utils.gen_experiment_id() # if not os.path.exists(output_dataset_path): # try: # os.mkdir(output_dataset_path) # except: # logging.warning('Failed to create %s. The dataset path may have been created simultaneously by another process' %(dataset_path)) # proc_id = 'clustering_2' # output_dataset_path = os.path.join(output_dataset_path, 'dataset_%s' %(proc_id)) # open input dataset # logging.info('Opening input dataset: %s' % input_dataset_path) # input_dataset = TensorDataset.open(input_dataset_path) # open output_dataset # logging.info('Opening output dataset: %s' % output_dataset_path) # dataset = TensorDataset(output_dataset_path, tensor_config) # datapoint = dataset.datapoint_template # setup logging # experiment_log_filename = os.path.join(output_dataset_path, 'dataset_generation.log') # formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s') # hdlr = logging.FileHandler(experiment_log_filename) # hdlr.setFormatter(formatter) # logging.getLogger().addHandler(hdlr) # config.save(os.path.join(output_dataset_path, 'dataset_generation_params.yaml')) # key mappings # we add the empty string as a mapping because if you don't evaluate dexnet on the 'before' state of the push obj_id = 1 obj_ids = {'': 0} action_ids = { 'ParallelJawGraspAction': 0, 'SuctionGraspAction': 1, 'LinearPushAction': 2 } # add action ids reverse_action_ids = utils.reverse_dictionary(action_ids) # dataset.add_metadata('action_ids', reverse_action_ids) # perform rollouts n = 0 rollout_start = time.time() current_heap_id = None while n < num_rollouts: # create env create_start = time.time() bin_picking_env = GraspingEnv(config, vis_config) create_stop = time.time() logging.info('Creating env took %.3f sec' %(create_stop-create_start)) # perform rollouts rollouts_remaining = num_rollouts - n for i in range(min(rollouts_per_garbage_collect, rollouts_remaining)): # log current rollout logging.info('\n') if n % vis_config['log_rate'] == 0: logging.info('Rollout: %03d' %(n)) try: # mark rollout status data_saved = False num_steps = 0 # read heap id # heap_id = heap_ids[n] # timestep = timesteps[n] # while heap_id == current_heap_id:# or heap_id < 81:#[226, 287, 325, 453, 469, 577, 601, 894, 921]: 26 # n += 1 # heap_id = heap_ids[n] # timestep = timesteps[n] push_logger = logging.getLogger('push') # push_logger.info('~') # push_logger.info('Heap ID %d' % heap_id) # current_heap_id = heap_id # reset env reset_start = time.time() # bin_picking_env.reset_from_dataset(input_dataset, # heap_id, # timestep) bin_picking_env.reset() state = bin_picking_env.state environment = bin_picking_env.environment if fully_observed: observation = None else: observation = bin_picking_env.observation policy.set_environment(environment) reset_stop = time.time() # add objects to mapping for obj_key in state.obj_keys: if obj_key not in obj_ids.keys(): obj_ids[obj_key] = obj_id obj_id += 1 push_logger.info(obj_key) # save id mappings reverse_obj_ids = utils.reverse_dictionary(obj_ids) # dataset.add_metadata('obj_ids', reverse_obj_ids) # store datapoint env params # datapoint['heap_ids'] = current_heap_id # datapoint['camera_poses'] = environment.camera.T_camera_world.vec # datapoint['camera_intrs'] = environment.camera.intrinsics.vec # datapoint['robot_poses'] = environment.robot.T_robot_world.vec # render if vis_config['initial_state']: vis3d.figure() bin_picking_env.render_3d_scene() vis3d.pose(environment.robot.T_robot_world) vis3d.show(starting_camera_pose=CAMERA_POSE) # observe if vis_config['initial_obs']: vis2d.figure() vis2d.imshow(observation, auto_subplot=True) vis2d.show() # rollout on current satte done = False failed = False # if isinstance(policy, SingulationFullRolloutPolicy): # policy.reset_num_failed_grasps() while not done: if vis_config['step_stats']: logging.info('Heap ID: %s' % heap_id) logging.info('Timestep: %s' % bin_picking_env.timestep) # get action policy_start = time.time() if fully_observed: action = policy.action(state) else: action = policy.action(observation) policy_stop = time.time() logging.info('Composite Policy took %.3f sec' %(policy_stop-policy_start)) # render scene before if vis_config['action']: #gripper = bin_picking_env.gripper(action) vis3d.figure() # GRASPINGENV # bin_picking_env.render_3d_scene(render_camera=False, workspace_objs_wireframe=False) bin_picking_env.render_3d_scene() if isinstance(action, GraspAction): vis3d.gripper(gripper, action.grasp(gripper)) #if isinstance(action, LinearPushAction): else: # # T_start_world = action.T_begin_world * gripper.T_mesh_grasp # # T_end_world = action.T_end_world * gripper.T_mesh_grasp # #start_point = action.T_begin_world.translation # start_point = action['start'] # #end_point = action.T_end_world.translation # end_point = action['end'] # vec = (end_point - start_point) / np.linalg.norm(end_point-start_point) if np.linalg.norm(end_point-start_point) > 0 else end_point-start_point # #h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(vec) # #h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(vec) # arrow_len = np.linalg.norm(start_point - end_point) # h1 = (end_point - start_point + np.array([0,0,arrow_len])) / (arrow_len*math.sqrt(2)) # h2 = (end_point - start_point - np.array([0,0,arrow_len])) / (arrow_len*math.sqrt(2)) # shaft_points = [start_point, end_point] # head_points = [end_point - 0.03*h2, end_point, end_point - 0.03*h1] # #vis3d.plot3d(shaft_points, color=[0,0,1]) # #vis3d.plot3d(head_points, color=[0,0,1]) # Displaying all potential topple points for vertex, prob in zip(action['vertices'], action['probabilities']): color = np.array([min(1, 2*(1-prob)), min(2*prob, 1), 0]) vis3d.points(Point(vertex, 'world'), scale=.0005, color=color) for vertex in action['bottom_points']: color = np.array([0,0,1]) vis3d.points(Point(vertex, 'world'), scale=.0005, color=color) vis3d.points(Point(action['com'], 'world'), scale=.005, color=np.array([0,0,1])) vis3d.points(Point(np.array([0,0,0]), 'world'), scale=.005, color=np.array([0,1,0])) #set_of_lines = action['set_of_lines'] #for i, line in enumerate(set_of_lines): # color = str(bin(i+1))[2:].zfill(3) # color = np.array([color[2], color[1], color[0]]) # vis3d.plot3d(line, color=color) vis3d.show(starting_camera_pose=CAMERA_POSE) # Show vis3d.figure() bin_picking_env.render_3d_scene() final_pose_ind = action['final_pose_ind'] / np.amax(action['final_pose_ind']) for vertex, final_pose_ind in zip(action['vertices'], final_pose_ind): color = np.array([0, min(1, 2*(1-prob)), min(2*prob, 1)]) vis3d.points(Point(vertex, 'world'), scale=.0005, color=color) vis3d.show(starting_camera_pose=CAMERA_POSE) color=np.array([0,0,1]) original_pose = state.obj.T_obj_world pose_num = 0 for pose, edge_point1, edge_point2 in zip(action['final_poses'], action['bottom_points'], np.roll(action['bottom_points'],-1,axis=0)): print 'Pose:', pose_num pose_num += 1 pose = pose.T_obj_table vis3d.figure() state.obj.T_obj_world = original_pose bin_picking_env.render_3d_scene() vis3d.points(Point(edge_point1, 'world'), scale=.0005, color=color) vis3d.points(Point(edge_point2, 'world'), scale=.0005, color=color) vis3d.show(starting_camera_pose=CAMERA_POSE) vis3d.figure() state.obj.T_obj_world = pose bin_picking_env.render_3d_scene() vis3d.points(Point(edge_point1, 'world'), scale=.0005, color=color) vis3d.points(Point(edge_point2, 'world'), scale=.0005, color=color) vis3d.show(starting_camera_pose=CAMERA_POSE) #vis3d.save('/home/mjd3/Pictures/weird_pics/%d_%d_before.png' % (heap_id, bin_picking_env.timestep), starting_camera_pose=CAMERA_POSE) # store datapoint pre-step data j = 0 obj_poses = np.zeros(fields_config['obj_poses']['height']) obj_coms = np.zeros(fields_config['obj_coms']['height']) obj_ids_vec = np.iinfo(np.uint32).max * np.ones(fields_config['obj_ids']['height']) for obj_state in state.obj_states: obj_poses[j*POSE_DIM:(j+1)*POSE_DIM] = obj_state.T_obj_world.vec obj_coms[j*POINT_DIM:(j+1)*POINT_DIM] = obj_state.center_of_mass obj_ids_vec[j] = obj_ids[obj_state.key] j += 1 action_poses = np.zeros(fields_config['action_poses']['height']) #if isinstance(action, GraspAction): # action_poses[:7] = action.T_grasp_world.vec #else: # action_poses[:7] = action.T_begin_world.vec # action_poses[7:] = action.T_end_world.vec # if isinstance(policy, SingulationMetricsCompositePolicy): # actual_distance_matrix_length = int(comb(len(state.objs), 2)) # bin_distances = np.append(action.metadata['bin_distances'], # np.zeros(max_obj_per_pile-len(state.objs)) # ) # distance_matrix = np.append(action.metadata['distance_matrix'], # np.zeros(max_distance_matrix_length - actual_distance_matrix_length) # ) # datapoint['bin_distances'] = bin_distances # datapoint['distance_matrix'] = distance_matrix # datapoint['T_begin_world'] = action.T_begin_world.matrix # datapoint['T_end_world'] = action.T_end_world.matrix # datapoint['parallel_jaw_best_q_value'] = action.metadata['parallel_jaw_best_q_value'] # # datapoint['parallel_jaw_mean_q_value'] = action.metadata['parallel_jaw_mean_q_value'] # # datapoint['parallel_jaw_num_grasps'] = action.metadata['parallel_jaw_num_grasps'] # datapoint['suction_best_q_value'] = action.metadata['suction_best_q_value'] # # datapoint['suction_mean_q_value'] = action.metadata['suction_mean_q_value'] # # datapoint['suction_num_grasps'] = action.metadata['suction_num_grasps'] # # logging.info('Suction Q: %f, PJ Q: %f' % (action.metadata['suction_q_value'], action.metadata['parallel_jaw_q_value'])) # # datapoint['obj_index'] = action.metadata['obj_index'] # # datapoint['parallel_jaw_best_q_value_single'] = action.metadata['parallel_jaw_best_q_value_single'] # # datapoint['suction_best_q_value_single'] = action.metadata['suction_best_q_value_single'] # datapoint['singulated_obj_index'] = action.metadata['singulated_obj_index'] # datapoint['parallel_jaw_grasped_obj_index'] = obj_ids[action.metadata['parallel_jaw_grasped_obj_key']] # datapoint['suction_grasped_obj_index'] = obj_ids[action.metadata['suction_grasped_obj_key']] # else: # datapoint['bin_distances'] = np.zeros(max_obj_per_pile) # datapoint['distance_matrix'] = np.zeros(max_distance_matrix_length) # datapoint['T_begin_world'] = np.zeros((4,4)) # datapoint['T_end_world'] = np.zeros((4,4)) # datapoint['parallel_jaw_best_q_value'] = -1 # datapoint['suction_best_q_value'] = -1 # datapoint['singulated_obj_index'] = -1 # datapoint['parallel_jaw_grasped_obj_index'] = -1 # datapoint['suction_grasped_obj_index'] = -1 # policy_id = 0 # if 'policy_id' in action.metadata.keys(): # policy_id = action.metadata['policy_id'] # greedy_q_value = 0 # if 'greedy_q_value' in action.metadata.keys(): # greedy_q_value = action.metadata['greedy_q_value'] # datapoint['timesteps'] = bin_picking_env.timestep # datapoint['obj_poses'] = obj_poses # datapoint['obj_coms'] = obj_coms # datapoint['obj_ids'] = obj_ids_vec # # if bin_picking_env.render_mode == RenderMode.RGBD: # # color_data = observation.color.raw_data # # depth_data = observation.depth.raw_data # # elif bin_picking_env.render_mode == RenderMode.DEPTH: # # color_data = np.zeros(observation.shape).astype(np.uint8) # # depth_data = observation.raw_data # # elif bin_picking_env.render_mode == RenderMode.COLOR: # # color_data = observation.raw_data # # depth_data = np.zeros(observation.shape) # # datapoint['color_ims'] = color_data # # datapoint['depth_ims'] = depth_data # datapoint['action_ids'] = action_ids[type(action).__name__] # datapoint['action_poses'] = action_poses # datapoint['policy_ids'] = policy_id # datapoint['greedy_q_values'] = greedy_q_value # datapoint['pred_q_values'] = action.q_value # step the policy #observation, reward, done, info = bin_picking_env.step(action) #state = bin_picking_env.state state.objs[0].T_obj_world = action['final_state'] # if isinstance(policy, SingulationFullRolloutPolicy): # policy.grasp_succeeds(info['grasp_succeeds']) # debugging info if vis_config['step_stats']: logging.info('Action type: %s' %(type(action).__name__)) logging.info('Action Q-value: %.3f' %(action.q_value)) logging.info('Reward: %d' %(reward)) logging.info('Policy took %.3f sec' %(policy_stop-policy_start)) logging.info('Num objects remaining: %d' %(bin_picking_env.num_objects)) if info['cleared_pile']: logging.info('Cleared pile!') # # store datapoint post-step data # datapoint['rewards'] = reward # datapoint['grasp_metrics'] = info['grasp_metric'] # datapoint['collisions'] = 1 * info['collides'] # datapoint['collisions_with_env'] = 1 * info['collides_with_static_obstacles'] # datapoint['grasped_obj_ids'] = obj_ids[info['grasped_obj_key']] # datapoint['cleared_pile'] = 1 * info['cleared_pile'] # # store datapoint # # dataset.add(datapoint) # data_saved = True # render observation if vis_config['obs']: vis2d.figure() vis2d.imshow(observation, auto_subplot=True) vis2d.show() # render scene after if vis_config['state']: vis3d.figure() bin_picking_env.render_3d_scene(render_camera=False) vis3d.show(starting_camera_pose=CAMERA_POSE) # vis3d.save('/home/mjd3/Pictures/weird_pics/%d_%d_after.png' % (heap_id, bin_picking_env.timestep), starting_camera_pose=CAMERA_POSE) state.objs[0].T_obj_world = action['tmpR'] vis3d.figure() bin_picking_env.render_3d_scene(render_camera=False) vis3d.show(starting_camera_pose=CAMERA_POSE) state.objs[0].T_obj_world = action['final_state'] # increment the number of steps num_steps += 1 if num_steps >= steps_per_test_case: done = True except NoActionFoundException as e: logging.warning('The policy failed to plan an action!') done = True except Exception as e: # log an error logging.warning('Rollout failed!') logging.warning('%s' %(str(e))) logging.warning(traceback.print_exc()) # if debug: # raise # reset env del bin_picking_env gc.collect() bin_picking_env = BinPickingEnv(config, vis_config) # terminate current rollout failed = True done = True # update test case id n += 1 # dataset.flush() # logging.info("\n\nflushing") # logging.info("exiting") # sys.exit() # garbage collect del bin_picking_env gc.collect() # return the dataset # dataset.flush() # log time rollout_stop = time.time() logging.info('Rollouts took %.3f sec' %(rollout_stop-rollout_start)) return dataset
def generate_segmask_dataset(output_dataset_path, config, save_tensors=True, warm_start=False): """ Generate a segmentation training dataset Parameters ---------- dataset_path : str path to store the dataset config : dict dictionary-like objects containing parameters of the simulator and visualization save_tensors : bool save tensor datasets (for recreating state) warm_start : bool restart dataset generation from a previous state """ # read subconfigs dataset_config = config['dataset'] image_config = config['images'] vis_config = config['vis'] # debugging debug = config['debug'] if debug: np.random.seed(SEED) # read general parameters num_states = config['num_states'] num_images_per_state = config['num_images_per_state'] states_per_flush = config['states_per_flush'] states_per_garbage_collect = config['states_per_garbage_collect'] # set max obj per state max_objs_per_state = config['state_space']['heap']['max_objs'] # read image parameters im_height = config['state_space']['camera']['im_height'] im_width = config['state_space']['camera']['im_width'] segmask_channels = max_objs_per_state + 1 # create the dataset path and all subfolders if they don't exist if not os.path.exists(output_dataset_path): os.mkdir(output_dataset_path) image_dir = os.path.join(output_dataset_path, 'images') if not os.path.exists(image_dir): os.mkdir(image_dir) color_dir = os.path.join(image_dir, 'color_ims') if image_config['color'] and not os.path.exists(color_dir): os.mkdir(color_dir) depth_dir = os.path.join(image_dir, 'depth_ims') if image_config['depth'] and not os.path.exists(depth_dir): os.mkdir(depth_dir) amodal_dir = os.path.join(image_dir, 'amodal_masks') if image_config['amodal'] and not os.path.exists(amodal_dir): os.mkdir(amodal_dir) modal_dir = os.path.join(image_dir, 'modal_masks') if image_config['modal'] and not os.path.exists(modal_dir): os.mkdir(modal_dir) semantic_dir = os.path.join(image_dir, 'semantic_masks') if image_config['semantic'] and not os.path.exists(semantic_dir): os.mkdir(semantic_dir) # setup logging experiment_log_filename = os.path.join(output_dataset_path, 'dataset_generation.log') if os.path.exists(experiment_log_filename) and not warm_start: os.remove(experiment_log_filename) Logger.add_log_file(logger, experiment_log_filename, global_log_file=True) config.save( os.path.join(output_dataset_path, 'dataset_generation_params.yaml')) metadata = {} num_prev_states = 0 # set dataset params if save_tensors: # read dataset subconfigs state_dataset_config = dataset_config['states'] image_dataset_config = dataset_config['images'] state_tensor_config = state_dataset_config['tensors'] image_tensor_config = image_dataset_config['tensors'] obj_pose_dim = POSE_DIM * max_objs_per_state obj_com_dim = POINT_DIM * max_objs_per_state state_tensor_config['fields']['obj_poses']['height'] = obj_pose_dim state_tensor_config['fields']['obj_coms']['height'] = obj_com_dim state_tensor_config['fields']['obj_ids']['height'] = max_objs_per_state image_tensor_config['fields']['camera_pose']['height'] = POSE_DIM if image_config['color']: image_tensor_config['fields']['color_im'] = { 'dtype': 'uint8', 'channels': 3, 'height': im_height, 'width': im_width } if image_config['depth']: image_tensor_config['fields']['depth_im'] = { 'dtype': 'float32', 'channels': 1, 'height': im_height, 'width': im_width } if image_config['modal']: image_tensor_config['fields']['modal_segmasks'] = { 'dtype': 'uint8', 'channels': segmask_channels, 'height': im_height, 'width': im_width } if image_config['amodal']: image_tensor_config['fields']['amodal_segmasks'] = { 'dtype': 'uint8', 'channels': segmask_channels, 'height': im_height, 'width': im_width } if image_config['semantic']: image_tensor_config['fields']['semantic_segmasks'] = { 'dtype': 'uint8', 'channels': 1, 'height': im_height, 'width': im_width } # create dataset filenames state_dataset_path = os.path.join(output_dataset_path, 'state_tensors') image_dataset_path = os.path.join(output_dataset_path, 'image_tensors') if warm_start: if not os.path.exists(state_dataset_path) or not os.path.exists( image_dataset_path): logger.error( 'Attempting to warm start without saved tensor dataset') exit(1) # open datasets logger.info('Opening state dataset') state_dataset = TensorDataset.open(state_dataset_path, access_mode='READ_WRITE') logger.info('Opening image dataset') image_dataset = TensorDataset.open(image_dataset_path, access_mode='READ_WRITE') # read configs state_tensor_config = state_dataset.config image_tensor_config = image_dataset.config # clean up datasets (there may be datapoints with indices corresponding to non-existent data) num_state_datapoints = state_dataset.num_datapoints num_image_datapoints = image_dataset.num_datapoints num_prev_states = num_state_datapoints # clean up images image_ind = num_image_datapoints - 1 image_datapoint = image_dataset[image_ind] while image_ind > 0 and image_datapoint[ 'state_ind'] >= num_state_datapoints: image_ind -= 1 image_datapoint = image_dataset[image_ind] images_to_remove = num_image_datapoints - 1 - image_ind logger.info('Deleting last %d image tensors' % (images_to_remove)) if images_to_remove > 0: image_dataset.delete_last(images_to_remove) num_image_datapoints = image_dataset.num_datapoints else: # create datasets from scratch logger.info('Creating datasets') state_dataset = TensorDataset(state_dataset_path, state_tensor_config) image_dataset = TensorDataset(image_dataset_path, image_tensor_config) # read templates state_datapoint = state_dataset.datapoint_template image_datapoint = image_dataset.datapoint_template if warm_start: if not os.path.exists( os.path.join(output_dataset_path, 'metadata.json')): logger.error( 'Attempting to warm start without previously created dataset') exit(1) # Read metadata and indices metadata = json.load( open(os.path.join(output_dataset_path, 'metadata.json'), 'r')) test_inds = np.load(os.path.join(image_dir, 'test_indices.npy')).tolist() train_inds = np.load(os.path.join(image_dir, 'train_indices.npy')).tolist() # set obj ids and splits reverse_obj_ids = metadata['obj_ids'] obj_id_map = utils.reverse_dictionary(reverse_obj_ids) obj_splits = metadata['obj_splits'] obj_keys = obj_splits.keys() mesh_filenames = metadata['meshes'] # Get list of images generated so far generated_images = sorted( os.listdir(color_dir)) if image_config['color'] else sorted( os.listdir(depth_dir)) num_total_images = len(generated_images) # Do our own calculation if no saved tensors if num_prev_states == 0: num_prev_states = num_total_images // num_images_per_state # Find images to remove and remove them from all relevant places if they exist num_images_to_remove = num_total_images - (num_prev_states * num_images_per_state) logger.info( 'Deleting last {} invalid images'.format(num_images_to_remove)) for k in range(num_images_to_remove): im_name = generated_images[-(k + 1)] im_basename = os.path.splitext(im_name)[0] im_ind = int(im_basename.split('_')[1]) if os.path.exists(os.path.join(depth_dir, im_name)): os.remove(os.path.join(depth_dir, im_name)) if os.path.exists(os.path.join(color_dir, im_name)): os.remove(os.path.join(color_dir, im_name)) if os.path.exists(os.path.join(semantic_dir, im_name)): os.remove(os.path.join(semantic_dir, im_name)) if os.path.exists(os.path.join(modal_dir, im_basename)): shutil.rmtree(os.path.join(modal_dir, im_basename)) if os.path.exists(os.path.join(amodal_dir, im_basename)): shutil.rmtree(os.path.join(amodal_dir, im_basename)) if im_ind in train_inds: train_inds.remove(im_ind) elif im_ind in test_inds: test_inds.remove(im_ind) else: # Create initial env to generate metadata env = BinHeapEnv(config) obj_id_map = env.state_space.obj_id_map obj_keys = env.state_space.obj_keys obj_splits = env.state_space.obj_splits mesh_filenames = env.state_space.mesh_filenames save_obj_id_map = obj_id_map.copy() save_obj_id_map[ENVIRONMENT_KEY] = np.iinfo(np.uint32).max reverse_obj_ids = utils.reverse_dictionary(save_obj_id_map) metadata['obj_ids'] = reverse_obj_ids metadata['obj_splits'] = obj_splits metadata['meshes'] = mesh_filenames json.dump(metadata, open(os.path.join(output_dataset_path, 'metadata.json'), 'w'), indent=JSON_INDENT, sort_keys=True) train_inds = [] test_inds = [] # generate states and images state_id = num_prev_states while state_id < num_states: # create env and set objects create_start = time.time() env = BinHeapEnv(config) env.state_space.obj_id_map = obj_id_map env.state_space.obj_keys = obj_keys env.state_space.set_splits(obj_splits) env.state_space.mesh_filenames = mesh_filenames create_stop = time.time() logger.info('Creating env took %.3f sec' % (create_stop - create_start)) # sample states states_remaining = num_states - state_id for i in range(min(states_per_garbage_collect, states_remaining)): # log current rollout if state_id % config['log_rate'] == 0: logger.info('State: %06d' % (state_id)) try: # reset env env.reset() state = env.state split = state.metadata['split'] # render state if vis_config['state']: env.view_3d_scene() # Save state if desired if save_tensors: # set obj state variables obj_pose_vec = np.zeros(obj_pose_dim) obj_com_vec = np.zeros(obj_com_dim) obj_id_vec = np.iinfo( np.uint32).max * np.ones(max_objs_per_state) j = 0 for obj_state in state.obj_states: obj_pose_vec[j * POSE_DIM:(j + 1) * POSE_DIM] = obj_state.pose.vec obj_com_vec[j * POINT_DIM:(j + 1) * POINT_DIM] = obj_state.center_of_mass obj_id_vec[j] = int(obj_id_map[obj_state.key]) j += 1 # store datapoint env params state_datapoint['state_id'] = state_id state_datapoint['obj_poses'] = obj_pose_vec state_datapoint['obj_coms'] = obj_com_vec state_datapoint['obj_ids'] = obj_id_vec state_datapoint['split'] = split # store state datapoint image_start_ind = image_dataset.num_datapoints image_end_ind = image_start_ind + num_images_per_state state_datapoint['image_start_ind'] = image_start_ind state_datapoint['image_end_ind'] = image_end_ind # clean up del obj_pose_vec del obj_com_vec del obj_id_vec # add state state_dataset.add(state_datapoint) # render images for k in range(num_images_per_state): # reset the camera if num_images_per_state > 1: env.reset_camera() obs = env.render_camera_image(color=image_config['color']) if image_config['color']: color_obs, depth_obs = obs else: depth_obs = obs # vis obs if vis_config['obs']: if image_config['depth']: plt.figure() plt.imshow(depth_obs) plt.title('Depth Observation') if image_config['color']: plt.figure() plt.imshow(color_obs) plt.title('Color Observation') plt.show() if image_config['modal'] or image_config[ 'amodal'] or image_config['semantic']: # render segmasks amodal_segmasks, modal_segmasks = env.render_segmentation_images( ) # retrieve segmask data modal_segmask_arr = np.iinfo(np.uint8).max * np.ones( [im_height, im_width, segmask_channels], dtype=np.uint8) amodal_segmask_arr = np.iinfo(np.uint8).max * np.ones( [im_height, im_width, segmask_channels], dtype=np.uint8) stacked_segmask_arr = np.zeros( [im_height, im_width, 1], dtype=np.uint8) modal_segmask_arr[:, :, :env. num_objects] = modal_segmasks amodal_segmask_arr[:, :, :env. num_objects] = amodal_segmasks if image_config['semantic']: for j in range(env.num_objects): this_obj_px = np.where( modal_segmasks[:, :, j] > 0) stacked_segmask_arr[this_obj_px[0], this_obj_px[1], 0] = j + 1 # visualize if vis_config['semantic']: plt.figure() plt.imshow(stacked_segmask_arr.squeeze()) plt.show() if save_tensors: # save image data as tensors if image_config['color']: image_datapoint['color_im'] = color_obs if image_config['depth']: image_datapoint['depth_im'] = depth_obs[:, :, None] if image_config['modal']: image_datapoint[ 'modal_segmasks'] = modal_segmask_arr if image_config['amodal']: image_datapoint[ 'amodal_segmasks'] = amodal_segmask_arr if image_config['semantic']: image_datapoint[ 'semantic_segmasks'] = stacked_segmask_arr image_datapoint['camera_pose'] = env.camera.pose.vec image_datapoint[ 'camera_intrs'] = env.camera.intrinsics.vec image_datapoint['state_ind'] = state_id image_datapoint['split'] = split # add image image_dataset.add(image_datapoint) # Save depth image and semantic masks if image_config['color']: ColorImage(color_obs).save( os.path.join( color_dir, 'image_{:06d}.png'.format( num_images_per_state * state_id + k))) if image_config['depth']: DepthImage(depth_obs).save( os.path.join( depth_dir, 'image_{:06d}.png'.format( num_images_per_state * state_id + k))) if image_config['modal']: modal_id_dir = os.path.join( modal_dir, 'image_{:06d}'.format(num_images_per_state * state_id + k)) if not os.path.exists(modal_id_dir): os.mkdir(modal_id_dir) for i in range(env.num_objects): BinaryImage(modal_segmask_arr[:, :, i]).save( os.path.join(modal_id_dir, 'channel_{:03d}.png'.format(i))) if image_config['amodal']: amodal_id_dir = os.path.join( amodal_dir, 'image_{:06d}'.format(num_images_per_state * state_id + k)) if not os.path.exists(amodal_id_dir): os.mkdir(amodal_id_dir) for i in range(env.num_objects): BinaryImage(amodal_segmask_arr[:, :, i]).save( os.path.join(amodal_id_dir, 'channel_{:03d}.png'.format(i))) if image_config['semantic']: GrayscaleImage(stacked_segmask_arr.squeeze()).save( os.path.join( semantic_dir, 'image_{:06d}.png'.format( num_images_per_state * state_id + k))) # Save split if split == TRAIN_ID: train_inds.append(num_images_per_state * state_id + k) else: test_inds.append(num_images_per_state * state_id + k) # auto-flush after every so many timesteps if state_id % states_per_flush == 0: np.save(os.path.join(image_dir, 'train_indices.npy'), train_inds) np.save(os.path.join(image_dir, 'test_indices.npy'), test_inds) if save_tensors: state_dataset.flush() image_dataset.flush() # delete action objects for obj_state in state.obj_states: del obj_state del state gc.collect() # update state id state_id += 1 except Exception as e: # log an error logger.warning('Heap failed!') logger.warning('%s' % (str(e))) logger.warning(traceback.print_exc()) if debug: raise del env gc.collect() env = BinHeapEnv(config) env.state_space.obj_id_map = obj_id_map env.state_space.obj_keys = obj_keys env.state_space.set_splits(obj_splits) env.state_space.mesh_filenames = mesh_filenames # garbage collect del env gc.collect() # write all datasets to file, save indices np.save(os.path.join(image_dir, 'train_indices.npy'), train_inds) np.save(os.path.join(image_dir, 'test_indices.npy'), test_inds) if save_tensors: state_dataset.flush() image_dataset.flush() logger.info('Generated %d image datapoints' % (state_id * num_images_per_state))
def run_parallel_bin_picking_benchmark(input_dataset_path, heap_ids, timesteps, output_dataset_path, config_filename): raise NotImplementedError('Cannot run in parallel. Need to split up the heap ids and timesteps') # load config config = YamlConfig(config_filename) # init ray ray_config = config['ray'] num_cpus = ray_config['num_cpus'] ray.init(num_cpus=num_cpus, redirect_output=ray_config['redirect_output']) # rollouts num_rollouts = config['num_rollouts'] // num_cpus dataset_ids = [rollout_bin_picking_policy_in_parallel.remote(dataset_path, config_filename, num_rollouts) for i in range(num_cpus)] dataset_filenames = ray.get(dataset_ids) if len(dataset_filenames) == 0: return # merge datasets subproc_dataset = TensorDataset.open(dataset_filenames[0]) tensor_config = subproc_dataset.config # open dataset dataset = TensorDataset(dataset_path, tensor_config) dataset.add_metadata('action_ids', subproc_dataset.metadata['action_ids']) # add datapoints obj_id = 0 heap_id = 0 obj_ids = {} for dataset_filename in dataset_filenames: logging.info('Aggregating data from %s' %(dataset_filename)) j = 0 subproc_dataset = TensorDataset.open(dataset_filename) subproc_obj_ids = subproc_dataset.metadata['obj_ids'] for datapoint in subproc_dataset: if j > 0 and datapoint['timesteps'] == 0: heap_id += 1 # modify object ids for i in range(datapoint['obj_ids'].shape[0]): subproc_obj_id = datapoint['obj_ids'][i] if subproc_obj_id != np.uint32(-1): subproc_obj_key = subproc_obj_ids[str(subproc_obj_id)] if subproc_obj_key not in obj_ids.keys(): obj_ids[subproc_obj_key] = obj_id obj_id += 1 datapoint['obj_ids'][i] = obj_ids[subproc_obj_key] # modify grasped obj id subproc_grasped_obj_id = datapoint['grasped_obj_ids'] grasped_obj_key = subproc_obj_ids[str(subproc_grasped_obj_id)] datapoint['grasped_obj_ids'] = obj_ids[grasped_obj_key] # modify heap id datapoint['heap_ids'] = heap_id # add datapoint to dataset dataset.add(datapoint) j += 1 # write to disk obj_ids = utils.reverse_dictionary(obj_ids) dataset.add_metadata('obj_ids', obj_ids) dataset.flush()