コード例 #1
0
sersic_light_profile = al.lp.EllSersic(
    centre=(0.0, 0.0),
    elliptical_comps=(0.2, 0.1),
    intensity=0.005,
    effective_radius=2.0,
    sersic_index=4.0,
)
"""
By passing this profile a `Grid2D`, we can evaluate the light at every (y,x) coordinate on the `Grid2D` and create an 
image of the `LightProfile`.
"""
image = sersic_light_profile.image_2d_from(grid=grid)
"""
The PyAutoLens plot module provides methods for plotting objects and their properties, like the `LightProfile`'s image.
"""
light_profile_plotter = aplt.LightProfilePlotter(
    light_profile=sersic_light_profile, grid=grid)
light_profile_plotter.figures_2d(image=True)
"""
__Mass Profiles__

**PyAutoLens** uses `MassProfile` objects to represent a galaxy's mass distribution and perform ray-tracing
calculations. 

Below we create an `EllIsothermal` `MassProfile` and compute its deflection angles on our Cartesian grid:
"""
isothermal_mass_profile = al.mp.EllIsothermal(centre=(0.0, 0.0),
                                              elliptical_comps=(0.1, 0.0),
                                              einstein_radius=1.6)
deflections = isothermal_mass_profile.deflections_yx_2d_from(grid=grid)
"""
Lets plot the `MassProfile`'s deflection angle map.
コード例 #2
0
galaxy_plotter = aplt.GalaxyPlotter(
    galaxy=fit.tracer.source_plane.galaxies[0], grid=source_plane_grid
)
galaxy_plotter.figures(image=True)

# %%
"""
As our fit and ray-tracing becomes more complex, it is useful to know how to decompose their different attributes to 
extract different things about them. For example, we made our source-galaxy above with two `LightProfile`'s, a 
`bulge` and `disk. We can plot the image of each component individually, if we know how to break-up the different 
components of the fit and `Tracer`.
"""

# %%
light_profile_plotter = aplt.LightProfilePlotter(
    light_profile=fit.tracer.source_plane.galaxies[0].bulge, grid=source_plane_grid
)
light_profile_plotter.set_title("Bulge Image")
light_profile_plotter.figures()

light_profile_plotter = aplt.LightProfilePlotter(
    light_profile=fit.tracer.source_plane.galaxies[0].disk, grid=source_plane_grid
)
light_profile_plotter.set_title("Disk Image")
light_profile_plotter.figures()

# %%
"""
And, we're done, not just with the tutorial, but the chapter!

To end, I want to quickly talk about code-design and structure. Yeah, I know, as a scientist, you don't like code 
コード例 #3
0
    effective_radius=0.8,
    sersic_index=4.0,
)
"""
__Grid__

We also need the 2D grid the `LightProfile` is evaluated on.
"""
grid = al.Grid2D.uniform(shape_native=(100, 100), pixel_scales=0.05)
"""
__Figures__

We now pass the light profile and grid to a `LightProfilePlotter` and call various `figure_*` methods to 
plot different attributes in 1D and 2D.
"""
light_profile_plotter = aplt.LightProfilePlotter(light_profile=bulge,
                                                 grid=grid)
light_profile_plotter.figures_1d(image=True)
light_profile_plotter.figures_2d(image=True)
"""
__Include__

A `LightProfile` and its `Grid2D` contains the following attributes which can be plotted automatically via 
the `Include2D` object.

(By default, a `Grid2D` does not contain a `Mask2D`, we therefore manually created a `Grid2D` with a mask to illustrate
plotting its mask and border below).
"""
include_2d = aplt.Include2D(origin=True,
                            mask=True,
                            border=True,
                            light_profile_centres=True)
コード例 #4
0
galaxy_plotter = aplt.GalaxyPlotter(
    galaxy=fit.tracer.source_plane.galaxies[0], grid=source_plane_grid
)
galaxy_plotter.figures_2d(image=True)

"""
Understanding how these objects decompose into the different components of a strong lens is important for general 
**PyAutoLens** use.

As the strong lens systems that we analyse become more complex, it is useful to know how to decompose their light 
profiles, mass profiles, galaxies and planes to extract different pieces of information about the strong lens. For 
example, we made our source-galaxy above with two light profiles, a `bulge` and `disk`. We can plot the lensed image of 
each component individually, now that we know how to break-up the different components of the fit and tracer.
"""
light_profile_plotter = aplt.LightProfilePlotter(
    light_profile=fit.tracer.source_plane.galaxies[0].bulge, grid=source_plane_grid
)
light_profile_plotter.set_title("Bulge Image")
light_profile_plotter.figures_2d(image=True)

light_profile_plotter = aplt.LightProfilePlotter(
    light_profile=fit.tracer.source_plane.galaxies[0].disk, grid=source_plane_grid
)
light_profile_plotter.set_title("Disk Image")
light_profile_plotter.figures_2d(image=True)

"""
__Visualization__

Furthermore, using the `MatPLot2D`, `Visuals2D` and `Include2D` objects visualize any aspect of a fit we're interested 
in and fully customize the figure. 
コード例 #5
0
"""
We also need the 2D grid the `LightProfile` is evaluated on.
"""
grid = al.Grid2D.uniform(shape_native=(100, 100), pixel_scales=0.05)

"""
We now pass the light profile and grid to a `LightProfilePlotter` and call the `figures_1d` methods to plot its image
as a function of radius.

The `LightProfile` includes the half-light radius as an internal property, meaning we can plot it via an `Include1D` 
object.
"""
include_1d = aplt.Include1D(half_light_radius=True)
light_profile_plotter = aplt.LightProfilePlotter(
    light_profile=bulge, grid=grid, include_1d=include_1d
)
light_profile_plotter.figures_1d(image=True)

"""
The appearance of the half-light radius is customized using a `HalfLightRadiusAXVLine` object.

To plot the half-light radius as a vertical line this wraps the following matplotlib method:

 plt.axvline: https://matplotlib.org/3.3.2/api/_as_gen/matplotlib.pyplot.axvline.html
"""
half_light_radius_axvline = aplt.HalfLightRadiusAXVLine(
    linestyle="-.", c="r", linewidth=20
)

mat_plot_1d = aplt.MatPlot1D(half_light_radius_axvline=half_light_radius_axvline)