def __init__(self, **kwargs): super().__init__() tune_grid = {} tune_distributions = {} tune_grid = { "n_estimators": np_list_arange(10, 300, 10, inclusive=True), "learning_rate": np_list_arange(0.001, 0.5, 0.001, inclusive=True), "subsample": np_list_arange(0.2, 1, 0.05, inclusive=True), "min_samples_split": [2, 4, 5, 7, 9, 10], "min_samples_leaf": [1, 2, 3, 4, 5], "max_depth": np_list_arange(1, 11, 1, inclusive=True), "min_impurity_decrease": [ 0, 0.0001, 0.001, 0.01, 0.0002, 0.002, 0.02, 0.0005, 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, ], "max_features": [1.0, "sqrt", "log2"], } tune_distributions = { "n_estimators": IntUniformDistribution(10, 300), "learning_rate": UniformDistribution(0.000001, 0.5, log=True), "subsample": UniformDistribution(0.2, 1), "min_samples_split": IntUniformDistribution(2, 10), "min_samples_leaf": IntUniformDistribution(1, 5), "max_depth": IntUniformDistribution(1, 11), "max_features": UniformDistribution(0.4, 1), "min_impurity_decrease": UniformDistribution(0.000000001, 0.5, log=True), } self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = GradientBoostingRegressor(**kwargs)
def __init__(self, **kwargs): tune_grid = {} tune_distributions = {} tune_grid = { "n_estimators": np_list_arange(10, 300, 10, inclusive=True), "criterion": ["gini", "entropy"], "max_depth": np_list_arange(1, 11, 1, inclusive=True), "min_impurity_decrease": [ 0, 0.0001, 0.001, 0.01, 0.0002, 0.002, 0.02, 0.0005, 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, ], "max_features": [1.0, "sqrt", "log2"], "bootstrap": [True, False], "min_samples_split": [2, 5, 7, 9, 10], "min_samples_leaf": [2, 3, 4, 5, 6], "class_weight": ["balanced", "balanced_subsample", {}], } tune_distributions = { "n_estimators": IntUniformDistribution(10, 300), "max_depth": IntUniformDistribution(1, 11), "min_samples_split": IntUniformDistribution(2, 10), "min_samples_leaf": IntUniformDistribution(1, 5), "max_features": UniformDistribution(0.4, 1), "min_impurity_decrease": UniformDistribution(0.000000001, 0.5, log=True), } self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = ExtraTreesClassifier(**kwargs)
def __init__(self, **kwargs): tune_grid = {} tune_distributions = {} tune_grid = { "max_depth": np_list_arange(1, 16, 1, inclusive=True), "max_features": [1.0, "sqrt", "log2"], "min_samples_leaf": [2, 3, 4, 5, 6], "min_samples_split": [2, 5, 7, 9, 10], "criterion": ["gini", "entropy"], "min_impurity_decrease": [ 0, 0.0001, 0.001, 0.01, 0.0002, 0.002, 0.02, 0.0005, 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, ], } tune_distributions = { "max_depth": IntUniformDistribution(1, 16), "max_features": UniformDistribution(0.4, 1), "min_samples_leaf": IntUniformDistribution(2, 6), "min_samples_split": IntUniformDistribution(2, 10), "min_impurity_decrease": UniformDistribution(0.000000001, 0.5, log=True), } self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = DecisionTreeClassifier(**kwargs)
def __init__(self, **kwargs): tune_grid = {} tune_distributions = {} tune_grid = { "max_iter_predict": [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,] } tune_distributions = {"max_iter_predict": IntUniformDistribution(100, 1000)} self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = GaussianProcessClassifier(**kwargs)
def __init__(self, **kwargs): super().__init__() tune_grid = {} tune_distributions = {} tune_grid = { "depth": list(range(1, 12)), "n_estimators": np_list_arange(10, 300, 10, inclusive=True), "random_strength": np_list_arange(0, 0.8, 0.1, inclusive=True), "l2_leaf_reg": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 50, 100, 200], } tune_distributions = { "depth": IntUniformDistribution(1, 11), "n_estimators": IntUniformDistribution(10, 300), "random_strength": UniformDistribution(0, 0.8), "l2_leaf_reg": IntUniformDistribution(1, 200, log=True), } self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = CatBoostRegressor(**kwargs)
def __init__(self, **kwargs): super().__init__() tune_grid = {} tune_distributions = {} tune_grid = { "learning_rate": ["constant", "invscaling", "adaptive"], "alpha": [ 0.0000001, 0.000001, 0.0001, 0.001, 0.01, 0.0005, 0.005, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, ], "hidden_layer_size_0": [50, 100], "hidden_layer_size_1": [0, 50, 100], "hidden_layer_size_2": [0, 50, 100], "activation": ["tanh", "identity", "logistic", "relu"], } tune_distributions = { "alpha": UniformDistribution(0.0000000001, 0.9999999999, log=True), "hidden_layer_size_0": IntUniformDistribution(50, 100), "hidden_layer_size_1": IntUniformDistribution(0, 100), "hidden_layer_size_2": IntUniformDistribution(0, 100), } self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = MLPRegressor(**kwargs)
def __init__(self, **kwargs): tune_grid = {} tune_distributions = {} tune_grid = { "n_estimators": np_list_arange(10, 300, 10, inclusive=True), "learning_rate": np_list_arange(0.001, 0.5, 0.001, inclusive=True), "algorithm": ["SAMME", "SAMME.R"], } tune_distributions = { "n_estimators": IntUniformDistribution(10, 300), "learning_rate": UniformDistribution(0.000001, 0.5, log=True), } self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = AdaBoostClassifier(**kwargs)
def __init__(self, **kwargs): super().__init__() tune_grid = {} tune_distributions = {} tune_grid = { "num_leaves": [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200], "learning_rate": np_list_arange(0.001, 0.5, 0.001, inclusive=True), "n_estimators": np_list_arange(10, 300, 10, inclusive=True), "min_split_gain": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], "reg_alpha": [ 0.0000001, 0.000001, 0.0001, 0.001, 0.01, 0.0005, 0.005, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3, 4, 5, 10, ], "reg_lambda": [ 0.0000001, 0.000001, 0.0001, 0.001, 0.01, 0.0005, 0.005, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3, 4, 5, 10, ], "feature_fraction": np_list_arange(0.4, 1, 0.1, inclusive=True), "bagging_fraction": np_list_arange(0.4, 1, 0.1, inclusive=True), "bagging_freq": [1, 2, 3, 4, 5, 6, 7], "min_child_samples": np_list_arange(5, 100, 5, inclusive=True), } tune_distributions = { "num_leaves": IntUniformDistribution(10, 200), "learning_rate": UniformDistribution(0.000001, 0.5, log=True), "n_estimators": IntUniformDistribution(10, 300), "min_split_gain": UniformDistribution(0, 1), "reg_alpha": UniformDistribution(0.0000000001, 10, log=True), "reg_lambda": UniformDistribution(0.0000000001, 10, log=True), "min_data_in_leaf": IntUniformDistribution(10, 10000), "feature_fraction": UniformDistribution(0.4, 1), "bagging_fraction": UniformDistribution(0.4, 1), "bagging_freq": IntUniformDistribution(1, 7), "min_child_samples": IntUniformDistribution(5, 100), } self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = LGBMRegressor(**kwargs)
def __init__(self, **kwargs): super().__init__() tune_grid = {} tune_distributions = {} tune_grid = { "learning_rate": np_list_arange(0.001, 0.5, 0.001, inclusive=True), "n_estimators": np_list_arange(10, 300, 10, inclusive=True), "subsample": [0.2, 0.3, 0.5, 0.7, 0.9, 1], "max_depth": np_list_arange(1, 11, 1, inclusive=True), "colsample_bytree": [0.5, 0.7, 0.9, 1], "min_child_weight": [1, 2, 3, 4], "reg_alpha": [ 0.0000001, 0.000001, 0.0001, 0.001, 0.01, 0.0005, 0.005, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3, 4, 5, 10, ], "reg_lambda": [ 0.0000001, 0.000001, 0.0001, 0.001, 0.01, 0.0005, 0.005, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3, 4, 5, 10, ], "scale_pos_weight": np_list_arange(0, 50, 0.1, inclusive=True), } tune_distributions = { "learning_rate": UniformDistribution(0.000001, 0.5, log=True), "n_estimators": IntUniformDistribution(10, 300), "subsample": UniformDistribution(0.2, 1), "max_depth": IntUniformDistribution(1, 11), "colsample_bytree": UniformDistribution(0.5, 1), "min_child_weight": IntUniformDistribution(1, 4), "reg_alpha": UniformDistribution(0.0000000001, 10, log=True), "reg_lambda": UniformDistribution(0.0000000001, 10, log=True), "scale_pos_weight": UniformDistribution(1, 50), } self.tune_grid = tune_grid self.tune_distributions = tune_distributions self.estimator = XGBRegressor(**kwargs)