コード例 #1
0
    def __init__(self):

        # Setup
        self.duration = 240
        self.P = C.PARAMETERSET_3  # Scenario parameters choice
        # Time handling
        self.clock = pg.time.Clock()
        self.fps = C.FPS
        self.running = True
        self.paused = False
        self.end = False
        self.frame = 0
        self.car_num_display = 0

        # Sim output
        self.sim_data = Sim_Data(3)

        # self.sim_out = open("./sim_outputs/output_test.pkl", "wb")

        # Vehicle Definitions ('aggressive','reactive','passive_aggressive')
        self.car_1 = DummyVehicle(scenario_parameters=self.P,
                                  car_parameters_self=self.P.CAR_1,
                                  who=1)  #H1
        self.car_2 = DummyVehicle(scenario_parameters=self.P,
                                  car_parameters_self=self.P.CAR_2,
                                  who=2)  #H2
        self.car_3 = AutonomousVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_3,
                                       who=3)  #M

        # Assign 'other' cars
        self.car_1.other_car_1 = self.car_2
        self.car_1.other_car_2 = self.car_3

        self.car_2.other_car_1 = self.car_1
        self.car_2.other_car_2 = self.car_3

        self.car_3.other_car_1 = self.car_1
        self.car_3.other_car_2 = self.car_2
        if C.DRAW:
            self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION)
            pg.display.flip()
            # self.capture = True if input("Capture video (y/n): ") else False
            self.capture = True
            output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
            os.makedirs("./sim_outputs/%s" % output_name)
            self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name,
                                "wb")

            if self.capture:
                self.output_dir = "./sim_outputs/%s/video/" % output_name
                os.makedirs(self.output_dir)

        # Go
        self.trial()
コード例 #2
0
    def __init__(self):

        # Setup
        self.duration = 100
        self.P = C.PARAMETERSET_2  # Scenario parameters choice
        # Time handling
        self.clock = pg.time.Clock()
        self.fps = C.FPS
        self.running = True
        self.paused = False
        self.end = False
        self.frame = 0
        self.car_num_display = 0

        # Sim output
        self.sim_data = Sim_Data()

        # self.sim_out = open("./sim_outputs/output_test.pkl", "wb")c

        # Vehicle Definitions ('aggressive','reactive','passive_aggressive',"berkeley_courtesy", 'courteous')
        self.car_1 = AutonomousVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_1,
                                       loss_style="basic",
                                       who=1)  #M
        self.car_2 = AutonomousVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_2,
                                       loss_style="basic",
                                       who=0)  #H

        # Assign 'other' cars
        self.car_1.other_car = self.car_2
        self.car_2.other_car = self.car_1
        self.car_1.states_o = self.car_2.states
        self.car_2.states_o = self.car_1.states
        self.car_1.actions_set_o = self.car_2.actions_set
        self.car_2.actions_set_o = self.car_1.actions_set

        if C.DRAW:
            self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION)
            pg.display.flip()
            # self.capture = True if input("Capture video (y/n): ") else False
            self.capture = False
            output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
            os.makedirs("./sim_outputs/%s" % output_name)
            self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name,
                                "wb")

            if self.capture:
                self.output_dir = "./sim_outputs/%s/video/" % output_name
                os.makedirs(self.output_dir)

        # Go
        self.trial()
コード例 #3
0
    def create_simulation(self, scenario='intersection'):

        # define scenarios
        if scenario == 'intersection':
            # intersection scenario with 2 cars

            # TODO: compile car parameters
            car_parameter = [P.CAR_1, P.CAR_2]
            inference_model = [InferenceModel("none", self), InferenceModel("none", self)]
            decision_model = [DecisionModel("complete_information", self), DecisionModel("complete_information", self)]

            # define agents
            self.agents = [AutonomousVehicle(sim=self, env=self.env, par=car_parameter[i],
                                             inference_model=inference_model[i],
                                             decision_model=decision_model[i],
                                             i=i) for i in range(len(car_parameter))]
    def __init__(self, env, duration, n_agents, inference_type, decision_type,
                 sim_dt, sim_lr, sim_nepochs):

        self.duration = duration
        self.n_agents = n_agents
        self.dt = sim_dt
        self.running = True
        self.paused = False
        self.end = False
        self.clock = pg.time.Clock()
        self.frame = 0

        self.env = env
        self.agents = []

        # define simulation
        car_parameter = self.env.car_par
        if self.n_agents == 2:
            # simulations with 2 cars
            inference_model: List[InferenceModel] = [
                InferenceModel(inference_type[i], self)
                for i in range(n_agents)
            ]
            decision_model: List[DecisionModel] = [
                DecisionModel(decision_type[i], self) for i in range(n_agents)
            ]

            # define agents
            self.agents = [
                AutonomousVehicle(sim=self,
                                  env=self.env,
                                  par=car_parameter[i],
                                  inference_model=inference_model[i],
                                  decision_model=decision_model[i],
                                  i=i) for i in range(len(car_parameter))
            ]

        self.draw = True  # visualization during sim
        self.capture = False  # save images during visualization
        # DISPLAY
        if self.draw:
            # TODO: update visualization
            self.vis = VisUtils(self)  # initialize visualization
コード例 #5
0
class Main():

    def __init__(self):

        # Setup
        self.duration = 240
        self.P = C.PARAMETERSET_3  # Scenario parameters choice
        # Time handling
        self.clock = pg.time.Clock()
        self.fps = C.FPS
        self.running = True
        self.paused = False
        self.end = False
        self.frame = 0
        self.car_num_display = 0

        # Sim output
        self.sim_data = Sim_Data(3)

        # self.sim_out = open("./sim_outputs/output_test.pkl", "wb")

        # Vehicle Definitions ('aggressive','reactive','passive_aggressive')
        self.car_1 = DummyVehicle(scenario_parameters=self.P,
                                  car_parameters_self=self.P.CAR_1,
                                  who=1)  #H1
        self.car_2 = DummyVehicle(scenario_parameters=self.P,
                                  car_parameters_self=self.P.CAR_2,
                                  who=2)  #H2
        self.car_3 = AutonomousVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_3,
                                       who=3) #M

        # Assign 'other' cars
        self.car_1.other_car_1 = self.car_2
        self.car_1.other_car_2 = self.car_3

        self.car_2.other_car_1 = self.car_1
        self.car_2.other_car_2 = self.car_3

        self.car_3.other_car_1 = self.car_1
        self.car_3.other_car_2 = self.car_2
        if C.DRAW:
            self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION)
            pg.display.flip()
            # self.capture = True if input("Capture video (y/n): ") else False
            self.capture = True
            output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
            os.makedirs("./sim_outputs/%s" % output_name)
            self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb")

            if self.capture:
                self.output_dir = "./sim_outputs/%s/video/" % output_name
                os.makedirs(self.output_dir)

        # Go
        self.trial()

    def trial(self):

        while self.running:

            # Update model here
            if not self.paused:
                self.car_1.update(self.frame)
                self.car_2.update(self.frame)
                self.car_3.update(self.frame)

                # Update data
                self.sim_data.record([self.car_1, self.car_2, self.car_3])

            if self.frame >= self.duration:
                break

            if C.DRAW:
                # Draw frame
                self.sim_draw.draw_frame(self.sim_data, self.car_num_display, self.frame)

                if self.capture:
                    pg.image.save(self.sim_draw.screen, "%simg%03d.jpeg" % (self.output_dir, self.frame))

                for event in pg.event.get():
                    if event.type == pg.QUIT:
                        pg.quit()
                        self.running = False

                    elif event.type == pg.KEYDOWN:
                        if event.key == pg.K_p:
                            self.paused = not self.paused

                        if event.key == pg.K_q:
                            pg.quit()
                            self.running = False

                        if event.key == pg.K_d:
                            self.car_num_display = ~self.car_num_display

                # Keep fps
                # self.clock.tick(self.fps)

            if not self.paused:
                self.frame += 1

        pg.quit()
        # pickle.dump(self.sim_data, self.sim_out, pickle.HIGHEST_PROTOCOL)
        print('Output pickled and dumped.')
        if self.capture:
            # Compile to video
            # os.system("ffmpeg -f image2 -framerate 1 -i %simg%%03d.jpeg %s/output_video.mp4 " % (self.output_dir, self.output_dir))
            img_list = [self.output_dir+"img"+str(i).zfill(3)+".jpeg" for i in range(self.frame)]
            import imageio
            images = []
            for filename in img_list:
                images.append(imageio.imread(filename))
            imageio.mimsave(self.output_dir+'movie.gif', images)
            #
            # # Delete images
            # [os.remove(self.output_dir + file) for file in os.listdir(self.output_dir) if ".jpeg" in file]
            # print("Simulation video output saved to %s." % self.output_dir)
        print("Simulation ended.")
コード例 #6
0
        self.playground = np.ones(self.SHAPE, dtype=np.uint8) * 255

        for x, y in self.predicted_pedestrians_location:
            cv2.circle(self.playground, (int(x), int(y)), 5, (0, 0, 255),
                       cv2.FILLED)

        for x, y in self.true_pedestrians_location:
            cv2.circle(self.playground, (x, y), 5, (0, 0, 0), cv2.FILLED)

        vehicle_x, vehicle_y, _ = self.autonomous_vehicle.location
        start_point = (int(vehicle_x) - 5, int(vehicle_y) - 5)
        end_point = (int(vehicle_x) + 5, int(vehicle_y) + 5)
        cv2.rectangle(self.playground, start_point, end_point, (0, 255, 0),
                      cv2.FILLED)

    def test_show(self):
        cv2.imshow("Screen", self.playground)
        cv2.waitKey(0)


if __name__ == "__main__":
    pedestrians = Pedestrians.init_random(30)
    lidar = Lidar.init_from_pedestrians(pedestrians)
    autonomous_vehicle = AutonomousVehicle(360, 640, 0, lidar, (360, 640),
                                           (0, 0))
    scene = Scene(autonomous_vehicle, pedestrians)
    for i in range(30):
        scene.next(i)
        scene.render()
        scene.test_show()
コード例 #7
0
class Main():
    def __init__(self):

        # Setup
        self.duration = 100
        self.P = C.PARAMETERSET_2  # Scenario parameters choice
        # Time handling
        self.clock = pg.time.Clock()
        self.fps = C.FPS
        self.running = True
        self.paused = False
        self.end = False
        self.frame = 0
        self.car_num_display = 0

        # Sim output
        self.sim_data = Sim_Data()

        # self.sim_out = open("./sim_outputs/output_test.pkl", "wb")c

        # Vehicle Definitions ('aggressive','reactive','passive_aggressive',"berkeley_courtesy", 'courteous')
        self.car_1 = AutonomousVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_1,
                                       loss_style="basic",
                                       who=1)  #M
        self.car_2 = AutonomousVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_2,
                                       loss_style="basic",
                                       who=0)  #H

        # Assign 'other' cars
        self.car_1.other_car = self.car_2
        self.car_2.other_car = self.car_1
        self.car_1.states_o = self.car_2.states
        self.car_2.states_o = self.car_1.states
        self.car_1.actions_set_o = self.car_2.actions_set
        self.car_2.actions_set_o = self.car_1.actions_set

        if C.DRAW:
            self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION)
            pg.display.flip()
            # self.capture = True if input("Capture video (y/n): ") else False
            self.capture = False
            output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
            os.makedirs("./sim_outputs/%s" % output_name)
            self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name,
                                "wb")

            if self.capture:
                self.output_dir = "./sim_outputs/%s/video/" % output_name
                os.makedirs(self.output_dir)

        # Go
        self.trial()

    def trial(self):

        while self.running:

            # Update model here
            if not self.paused:
                self.car_1.update(self.frame)
                self.car_2.update(self.frame)

                # calculate gracefulness
                grace = []
                for wanted_trajectory_other in self.car_2.wanted_trajectory_other:
                    wanted_actions_other = self.car_2.dynamic(
                        wanted_trajectory_other)
                    grace.append(1000 * (self.car_1.states[-1][0] -
                                         wanted_actions_other[0][0])**2)
                self.car_1.social_gracefulness.append(
                    sum(grace * self.car_2.inference_probability))

                # Update data
                self.sim_data.append_car1(
                    states=self.car_1.states,
                    actions=self.car_1.actions_set,
                    action_sets=self.car_1.planned_actions_set,
                    trajectory=self.car_1.planned_trajectory_set,
                    predicted_theta_other=self.car_1.predicted_theta_other,
                    predicted_theta_self=self.car_1.predicted_theta_self,
                    predicted_actions_other=self.car_1.predicted_actions_other,
                    predicted_others_prediction_of_my_actions=self.car_1.
                    predicted_others_prediction_of_my_actions,
                    wanted_trajectory_self=self.car_1.wanted_trajectory_self,
                    wanted_trajectory_other=self.car_1.wanted_trajectory_other,
                    wanted_states_other=self.car_1.wanted_states_other,
                    inference_probability=self.car_1.inference_probability,
                    inference_probability_proactive=self.car_1.
                    inference_probability_proactive,
                    theta_probability=self.car_1.theta_probability,
                    social_gracefulness=self.car_1.social_gracefulness)

                self.sim_data.append_car2(
                    states=self.car_2.states,
                    actions=self.car_2.actions_set,
                    action_sets=self.car_2.planned_actions_set,
                    trajectory=self.car_2.planned_trajectory_set,
                    predicted_theta_other=self.car_2.predicted_theta_other,
                    predicted_theta_self=self.car_2.predicted_theta_self,
                    predicted_actions_other=self.car_2.predicted_actions_other,
                    predicted_others_prediction_of_my_actions=self.car_2.
                    predicted_others_prediction_of_my_actions,
                    wanted_trajectory_self=self.car_2.wanted_trajectory_self,
                    wanted_trajectory_other=self.car_2.wanted_trajectory_other,
                    wanted_states_other=self.car_2.wanted_states_other,
                    inference_probability=self.car_2.inference_probability,
                    inference_probability_proactive=self.car_2.
                    inference_probability_proactive,
                    theta_probability=self.car_2.theta_probability,
                )

            if self.frame >= self.duration:
                break

            if C.DRAW:
                # Draw frame
                self.sim_draw.draw_frame(self.sim_data, self.car_num_display,
                                         self.frame)

                if self.capture:
                    pg.image.save(
                        self.sim_draw.screen,
                        "%simg%03d.jpeg" % (self.output_dir, self.frame))

                for event in pg.event.get():
                    if event.type == pg.QUIT:
                        pg.quit()
                        self.running = False

                    elif event.type == pg.KEYDOWN:
                        if event.key == pg.K_p:
                            self.paused = not self.paused

                        if event.key == pg.K_q:
                            pg.quit()
                            self.running = False

                        if event.key == pg.K_d:
                            self.car_num_display = ~self.car_num_display

                # Keep fps
                # self.clock.tick(self.fps)

            if not self.paused:
                self.frame += 1

        pg.quit()
        # pickle.dump(self.sim_data, self.sim_out, pickle.HIGHEST_PROTOCOL)
        print('Output pickled and dumped.')
        if self.capture:
            # Compile to video
            # os.system("ffmpeg -f image2 -framerate 1 -i %simg%%03d.jpeg %s/output_video.mp4 " % (self.output_dir, self.output_dir))
            img_list = [
                self.output_dir + "img" + str(i).zfill(3) + ".jpeg"
                for i in range(self.frame)
            ]

            images = []
            for filename in img_list:
                images.append(imageio.imread(filename))
            imageio.mimsave(self.output_dir + 'movie.gif', images)
            #
            # # Delete images
            # [os.remove(self.output_dir + file) for file in os.listdir(self.output_dir) if ".jpeg" in file]
            # print("Simulation video output saved to %s." % self.output_dir)
        print("Simulation ended.")

        car_1_theta = np.empty((0, 2))
        car_1_accuracy = np.empty((0, 1))
        car_2_theta = np.empty((0, 2))
        car_2_accuracy = np.empty((0, 1))
        for t in range(self.frame):
            car_1_theta = np.append(
                car_1_theta,
                np.expand_dims(self.sim_data.car2_theta_probability[t],
                               axis=0),
                axis=0)
            car_2_theta = np.append(
                car_2_theta,
                np.expand_dims(self.sim_data.car1_theta_probability[t],
                               axis=0),
                axis=0)
            if self.car_1.intent == 1:
                if car_1_theta[t][0] > car_1_theta[t][1]:
                    car_1_accuracy = np.append(car_1_accuracy, 1)
                else:
                    car_1_accuracy = np.append(car_1_accuracy, 0)
            else:
                if car_1_theta[t][1] > car_1_theta[t][0]:
                    car_1_accuracy = np.append(car_1_accuracy, 1)
                else:
                    car_1_accuracy = np.append(car_1_accuracy, 0)
            if self.car_2.intent == 1:
                if car_2_theta[t][0] > car_2_theta[t][1]:
                    car_2_accuracy = np.append(car_2_accuracy, 1)
                else:
                    car_2_accuracy = np.append(car_2_accuracy, 0)
            else:
                if car_2_theta[t][1] > car_2_theta[t][0]:
                    car_2_accuracy = np.append(car_2_accuracy, 1)
                else:
                    car_2_accuracy = np.append(car_2_accuracy, 0)
        car_1_acc = np.sum(car_1_accuracy) * 0.01
        car_2_acc = np.sum(car_2_accuracy) * 0.01
        plt.subplot(2, 1, 1)
        plt.plot(range(1, self.frame + 1),
                 car_1_theta[:, 0],
                 '#1f77b4',
                 alpha=0.1)
        plt.plot(range(1, self.frame + 1),
                 car_1_theta[:, 1],
                 '#ff7f0e',
                 alpha=0.1)
        plt.subplot(2, 1, 2)
        plt.plot(range(1, self.frame + 1),
                 car_2_theta[:, 0],
                 '#1f77b4',
                 alpha=0.1)
        plt.plot(range(1, self.frame + 1),
                 car_2_theta[:, 1],
                 '#ff7f0e',
                 alpha=0.1)
        return car_1_acc, car_2_acc


#        plt.show()

    def get_accuracy(self):
        car_1_theta = np.empty((0, 2))
        car_1_accuracy = np.empty((0, 1))
        car_1_tilta = np.empty((0, 1))
        car_2_theta = np.empty((0, 2))
        car_2_accuracy = np.empty((0, 1))
        car_2_tilta = np.empty((0, 1))
        for t in range(self.frame):
            car_1_theta = np.append(
                car_1_theta,
                np.expand_dims(self.sim_data.car2_theta_probability[t],
                               axis=0),
                axis=0)
            car_2_theta = np.append(
                car_2_theta,
                np.expand_dims(self.sim_data.car1_theta_probability[t],
                               axis=0),
                axis=0)
            car_1_t_theta_1 = self.sim_data.car1_predicted_theta_self[t].count(
                1) / len(self.sim_data.car1_predicted_theta_self[t])
            car_1_t_theta_1000 = self.sim_data.car1_predicted_theta_self[
                t].count(1000) / len(
                    self.sim_data.car1_predicted_theta_self[t])
            car_2_t_theta_1 = self.sim_data.car2_predicted_theta_self[t].count(
                1) / len(self.sim_data.car2_predicted_theta_self[t])
            car_2_t_theta_1000 = self.sim_data.car2_predicted_theta_self[
                t].count(1000) / len(
                    self.sim_data.car2_predicted_theta_self[t])
            if self.car_1.intent == 1:
                if car_1_theta[t][0] > car_1_theta[t][1]:
                    car_1_accuracy = np.append(car_1_accuracy, 1)
                else:
                    car_1_accuracy = np.append(car_1_accuracy, 0)

                if car_1_t_theta_1 >= car_1_t_theta_1000:

                    car_1_tilta = np.append(car_1_tilta, 1)
                else:
                    car_1_tilta = np.append(car_1_tilta, 0)

            else:
                if car_1_theta[t][1] > car_1_theta[t][0]:

                    car_1_accuracy = np.append(car_1_accuracy, 1)
                else:
                    car_1_accuracy = np.append(car_1_accuracy, 0)

                if car_1_t_theta_1000 >= car_1_t_theta_1:
                    car_1_tilta = np.append(car_1_tilta, 1)
                else:
                    car_1_tilta = np.append(car_1_tilta, 0)

            if self.car_2.intent == 1:
                if car_2_theta[t][0] > car_2_theta[t][1]:

                    car_2_accuracy = np.append(car_2_accuracy, 1)
                else:
                    car_2_accuracy = np.append(car_2_accuracy, 0)

                if car_2_t_theta_1 >= car_2_t_theta_1000:

                    car_2_tilta = np.append(car_2_tilta, 1)
                else:
                    car_2_tilta = np.append(car_2_tilta, 0)
            else:
                if car_2_theta[t][1] > car_2_theta[t][0]:
                    car_2_accuracy = np.append(car_2_accuracy, 1)
                else:
                    car_2_accuracy = np.append(car_2_accuracy, 0)
                if car_2_t_theta_1000 >= car_2_t_theta_1:
                    car_2_tilta = np.append(car_2_tilta, 1)
                else:
                    car_2_tilta = np.append(car_2_tilta, 0)
        car_1_acc = np.sum(car_1_accuracy) * 0.01
        car_2_acc = np.sum(car_2_accuracy) * 0.01
        car_1_t_acc = np.sum(car_1_tilta) * 0.01
        car_2_t_acc = np.sum(car_2_tilta) * 0.01
        return car_1_acc, car_2_acc, car_1_t_acc, car_2_t_acc
コード例 #8
0
ファイル: main.py プロジェクト: Lurkereer/social
    def __init__(self):

        # Setupq
        self.duration = 600
        self.P = C.PARAMETERSET_2  # Scenario parameters choice

        # Time handling
        self.clock = pg.time.Clock()
        self.fps = C.FPS
        self.running = True
        self.paused = False
        self.end = False
        self.frame = 0
        self.car_num_display = 0
        self.human_data = []
        self.joystick = None
        self.recordPerson = True

        # Sim output
        #output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")

        output_name = 'xiangyu_r'
        os.makedirs("./sim_outputs/%s" % output_name)
        self.sim_data = Sim_Data()
        self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb")
        self.human_dataFile = open(
            "./sim_outputs/%s/human_data.txt" % output_name, "wb")
        self.robot_dataFile = open(
            "./sim_outputs/%s/robot_data.txt" % output_name, "wb")
        self.fourcc = cv2.VideoWriter_fourcc(*'XVID')
        self.out = cv2.VideoWriter(
            "./sim_outputs/%s/recording.avi" % output_name, self.fourcc, 20.0,
            (640, 480))

        # self.sim_out = open("./sim_outputs/output_test.pkl", "wb")

        # Vehicle Definitions ('aggressive,'reactive','passive_aggressive')
        self.car_1 = ControlledVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_1,
                                       who=1)  # M
        self.car_2 = AutonomousVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_2,
                                       loss_style='reactive',
                                       who=0)  # H

        # Assign 'other' cars
        self.car_1.other_car = self.car_2
        self.car_2.other_car = self.car_1
        self.car_2.states_o = self.car_1.states
        self.car_2.actions_set_o = self.car_1.actions_set

        # while not self.init_controller():
        #     print 'Adjust controls'

        self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION)

        pg.display.flip()
        self.capture = True  # if input("Capture video (y/n): ") else False
        if self.capture:
            self.output_dir = "./sim_outputs/%s/video/" % output_name
            os.makedirs(self.output_dir)

        if self.recordPerson:
            self.cap = cv2.VideoCapture(0)
        # Go

        self.human_data.append(0)
        self.human_data.append(1)
        self.human_data.append(1)
        self.trial()
コード例 #9
0
ファイル: main.py プロジェクト: Lurkereer/social
class Main():
    def __init__(self):

        # Setupq
        self.duration = 600
        self.P = C.PARAMETERSET_2  # Scenario parameters choice

        # Time handling
        self.clock = pg.time.Clock()
        self.fps = C.FPS
        self.running = True
        self.paused = False
        self.end = False
        self.frame = 0
        self.car_num_display = 0
        self.human_data = []
        self.joystick = None
        self.recordPerson = True

        # Sim output
        #output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")

        output_name = 'xiangyu_r'
        os.makedirs("./sim_outputs/%s" % output_name)
        self.sim_data = Sim_Data()
        self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb")
        self.human_dataFile = open(
            "./sim_outputs/%s/human_data.txt" % output_name, "wb")
        self.robot_dataFile = open(
            "./sim_outputs/%s/robot_data.txt" % output_name, "wb")
        self.fourcc = cv2.VideoWriter_fourcc(*'XVID')
        self.out = cv2.VideoWriter(
            "./sim_outputs/%s/recording.avi" % output_name, self.fourcc, 20.0,
            (640, 480))

        # self.sim_out = open("./sim_outputs/output_test.pkl", "wb")

        # Vehicle Definitions ('aggressive,'reactive','passive_aggressive')
        self.car_1 = ControlledVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_1,
                                       who=1)  # M
        self.car_2 = AutonomousVehicle(scenario_parameters=self.P,
                                       car_parameters_self=self.P.CAR_2,
                                       loss_style='reactive',
                                       who=0)  # H

        # Assign 'other' cars
        self.car_1.other_car = self.car_2
        self.car_2.other_car = self.car_1
        self.car_2.states_o = self.car_1.states
        self.car_2.actions_set_o = self.car_1.actions_set

        # while not self.init_controller():
        #     print 'Adjust controls'

        self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION)

        pg.display.flip()
        self.capture = True  # if input("Capture video (y/n): ") else False
        if self.capture:
            self.output_dir = "./sim_outputs/%s/video/" % output_name
            os.makedirs(self.output_dir)

        if self.recordPerson:
            self.cap = cv2.VideoCapture(0)
        # Go

        self.human_data.append(0)
        self.human_data.append(1)
        self.human_data.append(1)
        self.trial()

    def trial(self):

        while self.running:

            if self.recordPerson:
                try:
                    ret, frame = self.cap.read()
                    if ret:
                        # frame = cv2.flip(frame, 0)
                        self.out.write(frame)
                except Exception, e:
                    print 'Exception: {}'.format(e)

            if game_joystick is not None:
                axes = game_joystick.get_numaxes()

                self.human_data = []
                for i in range(axes):
                    axis = game_joystick.get_axis(i)
                    # print type(axis)
                    # print("Axis {} value: {:>6.3f}".format(i, axis))
                    if i == 0:
                        self.human_data.append(round(axis, 3))
                    elif i == 2:
                        self.human_data.append(round(axis, 3))
                    elif i == 3:
                        self.human_data.append(round(axis, 3))
                print 'human_data: {}'.format(self.human_data)

            if not self.paused:
                self.car_1.update(self.human_data)
                self.car_2.update(self.frame)
                # self.machine_vehicle.update(self.human_vehicle, self.frame)

                # Update data
                self.sim_data.append_car1(
                    states=self.car_1.states,
                    actions=self.car_1.actions_set,
                    action_sets=self.car_1.planned_actions_set)

                self.sim_data.append_car2(
                    states=self.car_2.states,
                    actions=self.car_2.actions_set,
                    action_sets=self.car_2.planned_actions_set,
                    predicted_theta_other=self.car_2.predicted_theta_other,
                    predicted_theta_self=self.car_2.predicted_theta_self,
                    predicted_actions_other=self.car_2.predicted_actions_other,
                    predicted_others_prediction_of_my_actions=self.car_2.
                    predicted_others_prediction_of_my_actions)

            if self.frame >= self.duration:
                break

            sz = len(self.car_1.states)
            sz1 = len(self.car_2.states)
            ts = time.time()
            self.human_dataFile.write(
                str(self.car_1.states[sz - 1][0]) + ", " +
                str(self.car_1.states[sz - 1][1]) + ", " + str(ts) + "\n")
            self.robot_dataFile.write(
                str(self.car_2.states[sz1 - 1][0]) + ", " +
                str(self.car_2.states[sz1 - 1][1]) + ", " + str(ts) + "\n")

            # Draw frame
            self.sim_draw.draw_frame(self.sim_data, self.car_num_display,
                                     self.frame)

            if self.capture:
                pg.image.save(self.sim_draw.screen,
                              "%simg%03d.jpeg" % (self.output_dir, self.frame))

            for event in pg.event.get():
                if event.type == pg.QUIT:
                    pg.quit()
                    self.running = False

                elif event.type == pg.KEYDOWN:
                    if event.key == pg.K_p:
                        self.paused = not self.paused

                    if event.key == pg.K_q:
                        pg.quit()
                        self.running = False

                    if event.key == pg.K_d:
                        self.car_num_display = ~self.car_num_display

            # Keep fps
            self.clock.tick(self.fps)

            if not self.paused:
                self.frame += 1

        pg.quit()
        pickle.dump(self.sim_data, self.sim_out, pickle.HIGHEST_PROTOCOL)

        self.human_dataFile.close()
        self.robot_dataFile.close()
        if self.recordPerson:
            self.cap.release()
            self.out.release()
            cv2.destroyAllWindows()

        print('Output pickled and dumped.')
        if self.capture:
            # Compile to video
            os.system(
                "ffmpeg -f image2 -framerate 5 -i %simg%%03d.jpeg %s/output_video.gif "
                % (self.output_dir, self.output_dir))
            # Delete images
            [
                os.remove(self.output_dir + file)
                for file in os.listdir(self.output_dir) if ".jpeg" in file
            ]
            print("Simulation video output saved to %s." % self.output_dir)
        print("Simulation ended.")