def __init__(self): # Setup self.duration = 240 self.P = C.PARAMETERSET_3 # Scenario parameters choice # Time handling self.clock = pg.time.Clock() self.fps = C.FPS self.running = True self.paused = False self.end = False self.frame = 0 self.car_num_display = 0 # Sim output self.sim_data = Sim_Data(3) # self.sim_out = open("./sim_outputs/output_test.pkl", "wb") # Vehicle Definitions ('aggressive','reactive','passive_aggressive') self.car_1 = DummyVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_1, who=1) #H1 self.car_2 = DummyVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_2, who=2) #H2 self.car_3 = AutonomousVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_3, who=3) #M # Assign 'other' cars self.car_1.other_car_1 = self.car_2 self.car_1.other_car_2 = self.car_3 self.car_2.other_car_1 = self.car_1 self.car_2.other_car_2 = self.car_3 self.car_3.other_car_1 = self.car_1 self.car_3.other_car_2 = self.car_2 if C.DRAW: self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION) pg.display.flip() # self.capture = True if input("Capture video (y/n): ") else False self.capture = True output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") os.makedirs("./sim_outputs/%s" % output_name) self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb") if self.capture: self.output_dir = "./sim_outputs/%s/video/" % output_name os.makedirs(self.output_dir) # Go self.trial()
def __init__(self): # Setup self.duration = 100 self.P = C.PARAMETERSET_2 # Scenario parameters choice # Time handling self.clock = pg.time.Clock() self.fps = C.FPS self.running = True self.paused = False self.end = False self.frame = 0 self.car_num_display = 0 # Sim output self.sim_data = Sim_Data() # self.sim_out = open("./sim_outputs/output_test.pkl", "wb")c # Vehicle Definitions ('aggressive','reactive','passive_aggressive',"berkeley_courtesy", 'courteous') self.car_1 = AutonomousVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_1, loss_style="basic", who=1) #M self.car_2 = AutonomousVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_2, loss_style="basic", who=0) #H # Assign 'other' cars self.car_1.other_car = self.car_2 self.car_2.other_car = self.car_1 self.car_1.states_o = self.car_2.states self.car_2.states_o = self.car_1.states self.car_1.actions_set_o = self.car_2.actions_set self.car_2.actions_set_o = self.car_1.actions_set if C.DRAW: self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION) pg.display.flip() # self.capture = True if input("Capture video (y/n): ") else False self.capture = False output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") os.makedirs("./sim_outputs/%s" % output_name) self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb") if self.capture: self.output_dir = "./sim_outputs/%s/video/" % output_name os.makedirs(self.output_dir) # Go self.trial()
def create_simulation(self, scenario='intersection'): # define scenarios if scenario == 'intersection': # intersection scenario with 2 cars # TODO: compile car parameters car_parameter = [P.CAR_1, P.CAR_2] inference_model = [InferenceModel("none", self), InferenceModel("none", self)] decision_model = [DecisionModel("complete_information", self), DecisionModel("complete_information", self)] # define agents self.agents = [AutonomousVehicle(sim=self, env=self.env, par=car_parameter[i], inference_model=inference_model[i], decision_model=decision_model[i], i=i) for i in range(len(car_parameter))]
def __init__(self, env, duration, n_agents, inference_type, decision_type, sim_dt, sim_lr, sim_nepochs): self.duration = duration self.n_agents = n_agents self.dt = sim_dt self.running = True self.paused = False self.end = False self.clock = pg.time.Clock() self.frame = 0 self.env = env self.agents = [] # define simulation car_parameter = self.env.car_par if self.n_agents == 2: # simulations with 2 cars inference_model: List[InferenceModel] = [ InferenceModel(inference_type[i], self) for i in range(n_agents) ] decision_model: List[DecisionModel] = [ DecisionModel(decision_type[i], self) for i in range(n_agents) ] # define agents self.agents = [ AutonomousVehicle(sim=self, env=self.env, par=car_parameter[i], inference_model=inference_model[i], decision_model=decision_model[i], i=i) for i in range(len(car_parameter)) ] self.draw = True # visualization during sim self.capture = False # save images during visualization # DISPLAY if self.draw: # TODO: update visualization self.vis = VisUtils(self) # initialize visualization
class Main(): def __init__(self): # Setup self.duration = 240 self.P = C.PARAMETERSET_3 # Scenario parameters choice # Time handling self.clock = pg.time.Clock() self.fps = C.FPS self.running = True self.paused = False self.end = False self.frame = 0 self.car_num_display = 0 # Sim output self.sim_data = Sim_Data(3) # self.sim_out = open("./sim_outputs/output_test.pkl", "wb") # Vehicle Definitions ('aggressive','reactive','passive_aggressive') self.car_1 = DummyVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_1, who=1) #H1 self.car_2 = DummyVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_2, who=2) #H2 self.car_3 = AutonomousVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_3, who=3) #M # Assign 'other' cars self.car_1.other_car_1 = self.car_2 self.car_1.other_car_2 = self.car_3 self.car_2.other_car_1 = self.car_1 self.car_2.other_car_2 = self.car_3 self.car_3.other_car_1 = self.car_1 self.car_3.other_car_2 = self.car_2 if C.DRAW: self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION) pg.display.flip() # self.capture = True if input("Capture video (y/n): ") else False self.capture = True output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") os.makedirs("./sim_outputs/%s" % output_name) self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb") if self.capture: self.output_dir = "./sim_outputs/%s/video/" % output_name os.makedirs(self.output_dir) # Go self.trial() def trial(self): while self.running: # Update model here if not self.paused: self.car_1.update(self.frame) self.car_2.update(self.frame) self.car_3.update(self.frame) # Update data self.sim_data.record([self.car_1, self.car_2, self.car_3]) if self.frame >= self.duration: break if C.DRAW: # Draw frame self.sim_draw.draw_frame(self.sim_data, self.car_num_display, self.frame) if self.capture: pg.image.save(self.sim_draw.screen, "%simg%03d.jpeg" % (self.output_dir, self.frame)) for event in pg.event.get(): if event.type == pg.QUIT: pg.quit() self.running = False elif event.type == pg.KEYDOWN: if event.key == pg.K_p: self.paused = not self.paused if event.key == pg.K_q: pg.quit() self.running = False if event.key == pg.K_d: self.car_num_display = ~self.car_num_display # Keep fps # self.clock.tick(self.fps) if not self.paused: self.frame += 1 pg.quit() # pickle.dump(self.sim_data, self.sim_out, pickle.HIGHEST_PROTOCOL) print('Output pickled and dumped.') if self.capture: # Compile to video # os.system("ffmpeg -f image2 -framerate 1 -i %simg%%03d.jpeg %s/output_video.mp4 " % (self.output_dir, self.output_dir)) img_list = [self.output_dir+"img"+str(i).zfill(3)+".jpeg" for i in range(self.frame)] import imageio images = [] for filename in img_list: images.append(imageio.imread(filename)) imageio.mimsave(self.output_dir+'movie.gif', images) # # # Delete images # [os.remove(self.output_dir + file) for file in os.listdir(self.output_dir) if ".jpeg" in file] # print("Simulation video output saved to %s." % self.output_dir) print("Simulation ended.")
self.playground = np.ones(self.SHAPE, dtype=np.uint8) * 255 for x, y in self.predicted_pedestrians_location: cv2.circle(self.playground, (int(x), int(y)), 5, (0, 0, 255), cv2.FILLED) for x, y in self.true_pedestrians_location: cv2.circle(self.playground, (x, y), 5, (0, 0, 0), cv2.FILLED) vehicle_x, vehicle_y, _ = self.autonomous_vehicle.location start_point = (int(vehicle_x) - 5, int(vehicle_y) - 5) end_point = (int(vehicle_x) + 5, int(vehicle_y) + 5) cv2.rectangle(self.playground, start_point, end_point, (0, 255, 0), cv2.FILLED) def test_show(self): cv2.imshow("Screen", self.playground) cv2.waitKey(0) if __name__ == "__main__": pedestrians = Pedestrians.init_random(30) lidar = Lidar.init_from_pedestrians(pedestrians) autonomous_vehicle = AutonomousVehicle(360, 640, 0, lidar, (360, 640), (0, 0)) scene = Scene(autonomous_vehicle, pedestrians) for i in range(30): scene.next(i) scene.render() scene.test_show()
class Main(): def __init__(self): # Setup self.duration = 100 self.P = C.PARAMETERSET_2 # Scenario parameters choice # Time handling self.clock = pg.time.Clock() self.fps = C.FPS self.running = True self.paused = False self.end = False self.frame = 0 self.car_num_display = 0 # Sim output self.sim_data = Sim_Data() # self.sim_out = open("./sim_outputs/output_test.pkl", "wb")c # Vehicle Definitions ('aggressive','reactive','passive_aggressive',"berkeley_courtesy", 'courteous') self.car_1 = AutonomousVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_1, loss_style="basic", who=1) #M self.car_2 = AutonomousVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_2, loss_style="basic", who=0) #H # Assign 'other' cars self.car_1.other_car = self.car_2 self.car_2.other_car = self.car_1 self.car_1.states_o = self.car_2.states self.car_2.states_o = self.car_1.states self.car_1.actions_set_o = self.car_2.actions_set self.car_2.actions_set_o = self.car_1.actions_set if C.DRAW: self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION) pg.display.flip() # self.capture = True if input("Capture video (y/n): ") else False self.capture = False output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") os.makedirs("./sim_outputs/%s" % output_name) self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb") if self.capture: self.output_dir = "./sim_outputs/%s/video/" % output_name os.makedirs(self.output_dir) # Go self.trial() def trial(self): while self.running: # Update model here if not self.paused: self.car_1.update(self.frame) self.car_2.update(self.frame) # calculate gracefulness grace = [] for wanted_trajectory_other in self.car_2.wanted_trajectory_other: wanted_actions_other = self.car_2.dynamic( wanted_trajectory_other) grace.append(1000 * (self.car_1.states[-1][0] - wanted_actions_other[0][0])**2) self.car_1.social_gracefulness.append( sum(grace * self.car_2.inference_probability)) # Update data self.sim_data.append_car1( states=self.car_1.states, actions=self.car_1.actions_set, action_sets=self.car_1.planned_actions_set, trajectory=self.car_1.planned_trajectory_set, predicted_theta_other=self.car_1.predicted_theta_other, predicted_theta_self=self.car_1.predicted_theta_self, predicted_actions_other=self.car_1.predicted_actions_other, predicted_others_prediction_of_my_actions=self.car_1. predicted_others_prediction_of_my_actions, wanted_trajectory_self=self.car_1.wanted_trajectory_self, wanted_trajectory_other=self.car_1.wanted_trajectory_other, wanted_states_other=self.car_1.wanted_states_other, inference_probability=self.car_1.inference_probability, inference_probability_proactive=self.car_1. inference_probability_proactive, theta_probability=self.car_1.theta_probability, social_gracefulness=self.car_1.social_gracefulness) self.sim_data.append_car2( states=self.car_2.states, actions=self.car_2.actions_set, action_sets=self.car_2.planned_actions_set, trajectory=self.car_2.planned_trajectory_set, predicted_theta_other=self.car_2.predicted_theta_other, predicted_theta_self=self.car_2.predicted_theta_self, predicted_actions_other=self.car_2.predicted_actions_other, predicted_others_prediction_of_my_actions=self.car_2. predicted_others_prediction_of_my_actions, wanted_trajectory_self=self.car_2.wanted_trajectory_self, wanted_trajectory_other=self.car_2.wanted_trajectory_other, wanted_states_other=self.car_2.wanted_states_other, inference_probability=self.car_2.inference_probability, inference_probability_proactive=self.car_2. inference_probability_proactive, theta_probability=self.car_2.theta_probability, ) if self.frame >= self.duration: break if C.DRAW: # Draw frame self.sim_draw.draw_frame(self.sim_data, self.car_num_display, self.frame) if self.capture: pg.image.save( self.sim_draw.screen, "%simg%03d.jpeg" % (self.output_dir, self.frame)) for event in pg.event.get(): if event.type == pg.QUIT: pg.quit() self.running = False elif event.type == pg.KEYDOWN: if event.key == pg.K_p: self.paused = not self.paused if event.key == pg.K_q: pg.quit() self.running = False if event.key == pg.K_d: self.car_num_display = ~self.car_num_display # Keep fps # self.clock.tick(self.fps) if not self.paused: self.frame += 1 pg.quit() # pickle.dump(self.sim_data, self.sim_out, pickle.HIGHEST_PROTOCOL) print('Output pickled and dumped.') if self.capture: # Compile to video # os.system("ffmpeg -f image2 -framerate 1 -i %simg%%03d.jpeg %s/output_video.mp4 " % (self.output_dir, self.output_dir)) img_list = [ self.output_dir + "img" + str(i).zfill(3) + ".jpeg" for i in range(self.frame) ] images = [] for filename in img_list: images.append(imageio.imread(filename)) imageio.mimsave(self.output_dir + 'movie.gif', images) # # # Delete images # [os.remove(self.output_dir + file) for file in os.listdir(self.output_dir) if ".jpeg" in file] # print("Simulation video output saved to %s." % self.output_dir) print("Simulation ended.") car_1_theta = np.empty((0, 2)) car_1_accuracy = np.empty((0, 1)) car_2_theta = np.empty((0, 2)) car_2_accuracy = np.empty((0, 1)) for t in range(self.frame): car_1_theta = np.append( car_1_theta, np.expand_dims(self.sim_data.car2_theta_probability[t], axis=0), axis=0) car_2_theta = np.append( car_2_theta, np.expand_dims(self.sim_data.car1_theta_probability[t], axis=0), axis=0) if self.car_1.intent == 1: if car_1_theta[t][0] > car_1_theta[t][1]: car_1_accuracy = np.append(car_1_accuracy, 1) else: car_1_accuracy = np.append(car_1_accuracy, 0) else: if car_1_theta[t][1] > car_1_theta[t][0]: car_1_accuracy = np.append(car_1_accuracy, 1) else: car_1_accuracy = np.append(car_1_accuracy, 0) if self.car_2.intent == 1: if car_2_theta[t][0] > car_2_theta[t][1]: car_2_accuracy = np.append(car_2_accuracy, 1) else: car_2_accuracy = np.append(car_2_accuracy, 0) else: if car_2_theta[t][1] > car_2_theta[t][0]: car_2_accuracy = np.append(car_2_accuracy, 1) else: car_2_accuracy = np.append(car_2_accuracy, 0) car_1_acc = np.sum(car_1_accuracy) * 0.01 car_2_acc = np.sum(car_2_accuracy) * 0.01 plt.subplot(2, 1, 1) plt.plot(range(1, self.frame + 1), car_1_theta[:, 0], '#1f77b4', alpha=0.1) plt.plot(range(1, self.frame + 1), car_1_theta[:, 1], '#ff7f0e', alpha=0.1) plt.subplot(2, 1, 2) plt.plot(range(1, self.frame + 1), car_2_theta[:, 0], '#1f77b4', alpha=0.1) plt.plot(range(1, self.frame + 1), car_2_theta[:, 1], '#ff7f0e', alpha=0.1) return car_1_acc, car_2_acc # plt.show() def get_accuracy(self): car_1_theta = np.empty((0, 2)) car_1_accuracy = np.empty((0, 1)) car_1_tilta = np.empty((0, 1)) car_2_theta = np.empty((0, 2)) car_2_accuracy = np.empty((0, 1)) car_2_tilta = np.empty((0, 1)) for t in range(self.frame): car_1_theta = np.append( car_1_theta, np.expand_dims(self.sim_data.car2_theta_probability[t], axis=0), axis=0) car_2_theta = np.append( car_2_theta, np.expand_dims(self.sim_data.car1_theta_probability[t], axis=0), axis=0) car_1_t_theta_1 = self.sim_data.car1_predicted_theta_self[t].count( 1) / len(self.sim_data.car1_predicted_theta_self[t]) car_1_t_theta_1000 = self.sim_data.car1_predicted_theta_self[ t].count(1000) / len( self.sim_data.car1_predicted_theta_self[t]) car_2_t_theta_1 = self.sim_data.car2_predicted_theta_self[t].count( 1) / len(self.sim_data.car2_predicted_theta_self[t]) car_2_t_theta_1000 = self.sim_data.car2_predicted_theta_self[ t].count(1000) / len( self.sim_data.car2_predicted_theta_self[t]) if self.car_1.intent == 1: if car_1_theta[t][0] > car_1_theta[t][1]: car_1_accuracy = np.append(car_1_accuracy, 1) else: car_1_accuracy = np.append(car_1_accuracy, 0) if car_1_t_theta_1 >= car_1_t_theta_1000: car_1_tilta = np.append(car_1_tilta, 1) else: car_1_tilta = np.append(car_1_tilta, 0) else: if car_1_theta[t][1] > car_1_theta[t][0]: car_1_accuracy = np.append(car_1_accuracy, 1) else: car_1_accuracy = np.append(car_1_accuracy, 0) if car_1_t_theta_1000 >= car_1_t_theta_1: car_1_tilta = np.append(car_1_tilta, 1) else: car_1_tilta = np.append(car_1_tilta, 0) if self.car_2.intent == 1: if car_2_theta[t][0] > car_2_theta[t][1]: car_2_accuracy = np.append(car_2_accuracy, 1) else: car_2_accuracy = np.append(car_2_accuracy, 0) if car_2_t_theta_1 >= car_2_t_theta_1000: car_2_tilta = np.append(car_2_tilta, 1) else: car_2_tilta = np.append(car_2_tilta, 0) else: if car_2_theta[t][1] > car_2_theta[t][0]: car_2_accuracy = np.append(car_2_accuracy, 1) else: car_2_accuracy = np.append(car_2_accuracy, 0) if car_2_t_theta_1000 >= car_2_t_theta_1: car_2_tilta = np.append(car_2_tilta, 1) else: car_2_tilta = np.append(car_2_tilta, 0) car_1_acc = np.sum(car_1_accuracy) * 0.01 car_2_acc = np.sum(car_2_accuracy) * 0.01 car_1_t_acc = np.sum(car_1_tilta) * 0.01 car_2_t_acc = np.sum(car_2_tilta) * 0.01 return car_1_acc, car_2_acc, car_1_t_acc, car_2_t_acc
def __init__(self): # Setupq self.duration = 600 self.P = C.PARAMETERSET_2 # Scenario parameters choice # Time handling self.clock = pg.time.Clock() self.fps = C.FPS self.running = True self.paused = False self.end = False self.frame = 0 self.car_num_display = 0 self.human_data = [] self.joystick = None self.recordPerson = True # Sim output #output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") output_name = 'xiangyu_r' os.makedirs("./sim_outputs/%s" % output_name) self.sim_data = Sim_Data() self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb") self.human_dataFile = open( "./sim_outputs/%s/human_data.txt" % output_name, "wb") self.robot_dataFile = open( "./sim_outputs/%s/robot_data.txt" % output_name, "wb") self.fourcc = cv2.VideoWriter_fourcc(*'XVID') self.out = cv2.VideoWriter( "./sim_outputs/%s/recording.avi" % output_name, self.fourcc, 20.0, (640, 480)) # self.sim_out = open("./sim_outputs/output_test.pkl", "wb") # Vehicle Definitions ('aggressive,'reactive','passive_aggressive') self.car_1 = ControlledVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_1, who=1) # M self.car_2 = AutonomousVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_2, loss_style='reactive', who=0) # H # Assign 'other' cars self.car_1.other_car = self.car_2 self.car_2.other_car = self.car_1 self.car_2.states_o = self.car_1.states self.car_2.actions_set_o = self.car_1.actions_set # while not self.init_controller(): # print 'Adjust controls' self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION) pg.display.flip() self.capture = True # if input("Capture video (y/n): ") else False if self.capture: self.output_dir = "./sim_outputs/%s/video/" % output_name os.makedirs(self.output_dir) if self.recordPerson: self.cap = cv2.VideoCapture(0) # Go self.human_data.append(0) self.human_data.append(1) self.human_data.append(1) self.trial()
class Main(): def __init__(self): # Setupq self.duration = 600 self.P = C.PARAMETERSET_2 # Scenario parameters choice # Time handling self.clock = pg.time.Clock() self.fps = C.FPS self.running = True self.paused = False self.end = False self.frame = 0 self.car_num_display = 0 self.human_data = [] self.joystick = None self.recordPerson = True # Sim output #output_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") output_name = 'xiangyu_r' os.makedirs("./sim_outputs/%s" % output_name) self.sim_data = Sim_Data() self.sim_out = open("./sim_outputs/%s/output.pkl" % output_name, "wb") self.human_dataFile = open( "./sim_outputs/%s/human_data.txt" % output_name, "wb") self.robot_dataFile = open( "./sim_outputs/%s/robot_data.txt" % output_name, "wb") self.fourcc = cv2.VideoWriter_fourcc(*'XVID') self.out = cv2.VideoWriter( "./sim_outputs/%s/recording.avi" % output_name, self.fourcc, 20.0, (640, 480)) # self.sim_out = open("./sim_outputs/output_test.pkl", "wb") # Vehicle Definitions ('aggressive,'reactive','passive_aggressive') self.car_1 = ControlledVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_1, who=1) # M self.car_2 = AutonomousVehicle(scenario_parameters=self.P, car_parameters_self=self.P.CAR_2, loss_style='reactive', who=0) # H # Assign 'other' cars self.car_1.other_car = self.car_2 self.car_2.other_car = self.car_1 self.car_2.states_o = self.car_1.states self.car_2.actions_set_o = self.car_1.actions_set # while not self.init_controller(): # print 'Adjust controls' self.sim_draw = Sim_Draw(self.P, C.ASSET_LOCATION) pg.display.flip() self.capture = True # if input("Capture video (y/n): ") else False if self.capture: self.output_dir = "./sim_outputs/%s/video/" % output_name os.makedirs(self.output_dir) if self.recordPerson: self.cap = cv2.VideoCapture(0) # Go self.human_data.append(0) self.human_data.append(1) self.human_data.append(1) self.trial() def trial(self): while self.running: if self.recordPerson: try: ret, frame = self.cap.read() if ret: # frame = cv2.flip(frame, 0) self.out.write(frame) except Exception, e: print 'Exception: {}'.format(e) if game_joystick is not None: axes = game_joystick.get_numaxes() self.human_data = [] for i in range(axes): axis = game_joystick.get_axis(i) # print type(axis) # print("Axis {} value: {:>6.3f}".format(i, axis)) if i == 0: self.human_data.append(round(axis, 3)) elif i == 2: self.human_data.append(round(axis, 3)) elif i == 3: self.human_data.append(round(axis, 3)) print 'human_data: {}'.format(self.human_data) if not self.paused: self.car_1.update(self.human_data) self.car_2.update(self.frame) # self.machine_vehicle.update(self.human_vehicle, self.frame) # Update data self.sim_data.append_car1( states=self.car_1.states, actions=self.car_1.actions_set, action_sets=self.car_1.planned_actions_set) self.sim_data.append_car2( states=self.car_2.states, actions=self.car_2.actions_set, action_sets=self.car_2.planned_actions_set, predicted_theta_other=self.car_2.predicted_theta_other, predicted_theta_self=self.car_2.predicted_theta_self, predicted_actions_other=self.car_2.predicted_actions_other, predicted_others_prediction_of_my_actions=self.car_2. predicted_others_prediction_of_my_actions) if self.frame >= self.duration: break sz = len(self.car_1.states) sz1 = len(self.car_2.states) ts = time.time() self.human_dataFile.write( str(self.car_1.states[sz - 1][0]) + ", " + str(self.car_1.states[sz - 1][1]) + ", " + str(ts) + "\n") self.robot_dataFile.write( str(self.car_2.states[sz1 - 1][0]) + ", " + str(self.car_2.states[sz1 - 1][1]) + ", " + str(ts) + "\n") # Draw frame self.sim_draw.draw_frame(self.sim_data, self.car_num_display, self.frame) if self.capture: pg.image.save(self.sim_draw.screen, "%simg%03d.jpeg" % (self.output_dir, self.frame)) for event in pg.event.get(): if event.type == pg.QUIT: pg.quit() self.running = False elif event.type == pg.KEYDOWN: if event.key == pg.K_p: self.paused = not self.paused if event.key == pg.K_q: pg.quit() self.running = False if event.key == pg.K_d: self.car_num_display = ~self.car_num_display # Keep fps self.clock.tick(self.fps) if not self.paused: self.frame += 1 pg.quit() pickle.dump(self.sim_data, self.sim_out, pickle.HIGHEST_PROTOCOL) self.human_dataFile.close() self.robot_dataFile.close() if self.recordPerson: self.cap.release() self.out.release() cv2.destroyAllWindows() print('Output pickled and dumped.') if self.capture: # Compile to video os.system( "ffmpeg -f image2 -framerate 5 -i %simg%%03d.jpeg %s/output_video.gif " % (self.output_dir, self.output_dir)) # Delete images [ os.remove(self.output_dir + file) for file in os.listdir(self.output_dir) if ".jpeg" in file ] print("Simulation video output saved to %s." % self.output_dir) print("Simulation ended.")