コード例 #1
0
ファイル: test_graph.py プロジェクト: suil5044/AutoRec
def test_input_missing():
    input_node1 = Input()
    input_node2 = Input()
    output_node1 = MLPInteraction()(input_node1)
    output_node2 = MLPInteraction()(input_node2)
    output_node = ConcatenateInteraction()([output_node1, output_node2])
    output_node = RatingPredictionOptimizer()(output_node)

    with pytest.raises(ValueError) as info:
        graph_module.HyperGraph(input_node1, output_node)
    assert 'A required input is missing for HyperModel' in str(info.value)
コード例 #2
0
ファイル: test_graph.py プロジェクト: suil5044/AutoRec
def test_input_output_disconnect():
    input_node1 = Input()
    output_node = input_node1
    _ = MLPInteraction()(output_node)

    input_node = Input()
    output_node = input_node
    output_node = MLPInteraction()(output_node)
    output_node = RatingPredictionOptimizer()(output_node)

    with pytest.raises(ValueError) as info:
        graph_module.HyperGraph(input_node1, output_node)
    assert 'Inputs and outputs not connected.' in str(info.value)
コード例 #3
0
ファイル: test_graph.py プロジェクト: suil5044/AutoRec
def test_graph_basics():
    input_node = Input(shape=(30, ))
    output_node = input_node
    output_node = MLPInteraction()(output_node)
    output_node = RatingPredictionOptimizer()(output_node)

    graph = graph_module.PlainGraph(input_node, output_node)
    model = graph.build_keras_graph().build(hp_module.HyperParameters())
    assert model.input_shape == (None, 30)
    assert model.output_shape == (None, )
コード例 #4
0
def build_mlp(user_num, item_num):
    input = Input(shape=[2])
    user_emb_mlp = LatentFactorMapper(feat_column_id=0,
                                      id_num=user_num,
                                      embedding_dim=64)(input)
    item_emb_mlp = LatentFactorMapper(feat_column_id=1,
                                      id_num=user_num,
                                      embedding_dim=64)(input)
    output = MLPInteraction()([user_emb_mlp, item_emb_mlp])
    output = RatingPredictionOptimizer()(output)
    model = RPRecommender(inputs=input, outputs=output)
    return model
コード例 #5
0
def build_gmf(user_num, item_num):
    input = Input(shape=[2])
    user_emb = LatentFactorMapper(column_id=0,
                                  num_of_entities=user_num,
                                  embedding_dim=64)(input)
    item_emb = LatentFactorMapper(column_id=1,
                                  num_of_entities=item_num,
                                  embedding_dim=64)(input)
    output = InnerProductInteraction()([user_emb, item_emb])
    output = RatingPredictionOptimizer()(output)
    model = RPRecommender(inputs=input, outputs=output)
    return model
コード例 #6
0
def build_gmf(user_num, item_num):
    input = Input(shape=[2])
    user_emb = LatentFactorMapper(feat_column_id=0,
                                  id_num=user_num,
                                  embedding_dim=64)(input)
    item_emb = LatentFactorMapper(feat_column_id=1,
                                  id_num=item_num,
                                  embedding_dim=64)(input)
    output = ElementwiseInteraction(elementwise_type="innerporduct")(
        [user_emb, item_emb])
    output = RatingPredictionOptimizer()(output)
    model = RPRecommender(inputs=input, outputs=output)
    return model
コード例 #7
0
def build_autorec(user_num, item_num):
    input = Input(shape=[2])
    user_emb_1 = LatentFactorMapper(column_id=0,
                                    num_of_entities=user_num,
                                    embedding_dim=64)(input)
    item_emb_1 = LatentFactorMapper(column_id=1,
                                    num_of_entities=item_num,
                                    embedding_dim=64)(input)

    user_emb_2 = LatentFactorMapper(column_id=0,
                                    num_of_entities=user_num,
                                    embedding_dim=64)(input)
    item_emb_2 = LatentFactorMapper(column_id=1,
                                    num_of_entities=item_num,
                                    embedding_dim=64)(input)

    output = HyperInteraction()(
        [user_emb_1, item_emb_1, user_emb_2, item_emb_2])
    output = RatingPredictionOptimizer()(output)
    model = RPRecommender(inputs=input, outputs=output)
    return model
コード例 #8
0
def build_neumf(user_num, item_num):
    input = Input(shape=[2])
    user_emb_gmf = LatentFactorMapper(column_id=0,
                                      num_of_entities=user_num,
                                      embedding_dim=64)(input)
    item_emb_gmf = LatentFactorMapper(column_id=1,
                                      num_of_entities=item_num,
                                      embedding_dim=64)(input)
    innerproduct_output = InnerProductInteraction()(
        [user_emb_gmf, item_emb_gmf])

    user_emb_mlp = LatentFactorMapper(column_id=0,
                                      num_of_entities=user_num,
                                      embedding_dim=64)(input)
    item_emb_mlp = LatentFactorMapper(column_id=1,
                                      num_of_entities=item_num,
                                      embedding_dim=64)(input)
    mlp_output = MLPInteraction()([user_emb_mlp, item_emb_mlp])

    output = RatingPredictionOptimizer()([innerproduct_output, mlp_output])
    model = RPRecommender(inputs=input, outputs=output)
    return model
コード例 #9
0
ファイル: rp_neumf.py プロジェクト: datamllab/AutoRec
# load dataset
##Netflix Dataset
# dataset_paths = ["./examples/datasets/netflix-prize-data/combined_data_" + str(i) + ".txt" for i in range(1, 5)]
# data = NetflixPrizePreprocessor(dataset_paths)

# Step 1: Preprocess data
movielens = MovielensPreprocessor()
train_X, train_y, val_X, val_y, test_X, test_y = movielens.preprocess()
train_X_categorical = movielens.get_x_categorical(train_X)
val_X_categorical = movielens.get_x_categorical(val_X)
test_X_categorical = movielens.get_x_categorical(test_X)
user_num, item_num = movielens.get_hash_size()

# Step 2: Build the recommender, which provides search space
# Step 2.1: Setup mappers to handle inputs
input = Input(shape=[2])
user_emb_gmf = LatentFactorMapper(column_id=0,
                                  num_of_entities=user_num,
                                  embedding_dim=64)(input)
item_emb_gmf = LatentFactorMapper(column_id=1,
                                  num_of_entities=item_num,
                                  embedding_dim=64)(input)
user_emb_mlp = LatentFactorMapper(column_id=0,
                                  num_of_entities=user_num,
                                  embedding_dim=64)(input)
item_emb_mlp = LatentFactorMapper(column_id=1,
                                  num_of_entities=item_num,
                                  embedding_dim=64)(input)

# Step 2.2: Setup interactors to handle models
innerproduct_output = InnerProductInteraction()([user_emb_gmf, item_emb_gmf])
コード例 #10
0
ファイル: ctr_autoint.py プロジェクト: datamllab/AutoRec
criteo = CriteoPreprocessor(
)  # the default arguments are setup to preprocess the Criteo example dataset
train_X, train_y, val_X, val_y, test_X, test_y = criteo.preprocess()
train_X_numerical, train_X_categorical = criteo.get_x_numerical(
    train_X), criteo.get_x_categorical(train_X)
val_X_numerical, val_X_categorical = criteo.get_x_numerical(
    val_X), criteo.get_x_categorical(val_X)
test_X_numerical, test_X_categorical = criteo.get_x_numerical(
    test_X), criteo.get_x_categorical(test_X)
numerical_count = criteo.get_numerical_count()
categorical_count = criteo.get_categorical_count()
hash_size = criteo.get_hash_size()

# Step 2: Build the recommender, which provides search space
# Step 2.1: Setup mappers to handle inputs
dense_input_node = Input(shape=[numerical_count])
sparse_input_node = Input(shape=[categorical_count])
dense_feat_emb = DenseFeatureMapper(num_of_fields=numerical_count,
                                    embedding_dim=2)(dense_input_node)
sparse_feat_emb = SparseFeatureMapper(num_of_fields=categorical_count,
                                      hash_size=hash_size,
                                      embedding_dim=2)(sparse_input_node)

# Step 2.2: Setup interactors to handle models
attention_output = SelfAttentionInteraction()(
    [dense_feat_emb, sparse_feat_emb])
bottom_mlp_output = MLPInteraction()([dense_feat_emb])
top_mlp_output = MLPInteraction()([attention_output, bottom_mlp_output])

# Step 2.3: Setup optimizer to handle the target task
output = CTRPredictionOptimizer()(top_mlp_output)
コード例 #11
0
ファイル: ctr_autoint.py プロジェクト: suil5044/AutoRec
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# load dataset
mini_criteo = np.load("./examples/datasets/criteo/criteo_2M.npz")
# TODO: preprocess train val split
train_X = [
    mini_criteo['X_int'].astype(np.float32),
    mini_criteo['X_cat'].astype(np.float32)
]
train_y = mini_criteo['y']
val_X, val_y = train_X, train_y

# build the pipeline.
dense_input_node = Input(shape=[13])
sparse_input_node = Input(shape=[26])
dense_feat_emb = DenseFeatureMapper(num_of_fields=13,
                                    embedding_dim=2)(dense_input_node)

# TODO: preprocess data to get sparse hash_size
sparse_feat_emb = SparseFeatureMapper(num_of_fields=26,
                                      hash_size=[
                                          1444, 555, 175781, 128509, 306, 19,
                                          11931, 630, 4, 93146, 5161, 174835,
                                          3176, 28, 11255, 165206, 11, 4606,
                                          2017, 4, 172322, 18, 16, 56456, 86,
                                          43356
                                      ],
                                      embedding_dim=2)(sparse_input_node)
コード例 #12
0
ファイル: ctr_neumf.py プロジェクト: datamllab/AutoRec
# logging setting
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# load dataset
criteo = CriteoPreprocessor(
)  # automatically set up for preprocessing the Criteo dataset
train_X, train_y, val_X, val_y, test_X, test_y = criteo.preprocess()

# build the pipeline.
input = Input(shape=[criteo.get_categorical_count()])
user_emb_gmf = LatentFactorMapper(column_id=0,
                                  num_of_entities=10000,
                                  embedding_dim=64)(input)
item_emb_gmf = LatentFactorMapper(column_id=1,
                                  num_of_entities=10000,
                                  embedding_dim=64)(input)

user_emb_mlp = LatentFactorMapper(column_id=0,
                                  num_of_entities=10000,
                                  embedding_dim=64)(input)
item_emb_mlp = LatentFactorMapper(column_id=1,
                                  num_of_entities=10000,
                                  embedding_dim=64)(input)
innerproduct_output = InnerProductInteraction()([user_emb_gmf, item_emb_gmf])
mlp_output = MLPInteraction()([user_emb_mlp, item_emb_mlp])