def _get_pipeline(self, init_params=None): steps = [] default_dataset_properties = {'target_type': 'regression'} # Add the always active preprocessing components if init_params is not None and 'one_hot_encoding' in init_params: ohe_init_params = init_params['one_hot_encoding'] if 'categorical_features' in ohe_init_params: categorical_features = ohe_init_params['categorical_features'] else: categorical_features = None steps.extend( [["categorical_encoding", OHEChoice(default_dataset_properties)], ["imputation", Imputation()], ["variance_threshold", VarianceThreshold()], ["rescaling", rescaling_components.RescalingChoice( default_dataset_properties)]]) # Add the preprocessing component steps.append(['preprocessor', feature_preprocessing_components.FeaturePreprocessorChoice( default_dataset_properties)]) # Add the classification component steps.append(['regressor', regression_components.RegressorChoice( default_dataset_properties)]) return steps
def _get_pipeline(self): steps = [] default_dataset_properties = {'target_type': 'classification'} # Add the always active preprocessing components steps.extend([["one_hot_encoding", OneHotEncoder()], ["imputation", Imputation()], [ "rescaling", rescaling_components.RescalingChoice( default_dataset_properties) ], ["balancing", Balancing()]]) # Add the preprocessing component steps.append([ 'preprocessor', feature_preprocessing_components.FeaturePreprocessorChoice( default_dataset_properties) ]) # Add the classification component steps.append([ 'classifier', classification_components.ClassifierChoice( default_dataset_properties) ]) return steps
def _get_pipeline_steps(self): steps = [] default_dataset_props = {'target_type': 'classification'} steps.extend([ ["imputation", NumericalImputation()], ["variance_threshold", VarianceThreshold()], ["rescaling", rescaling_components.RescalingChoice(default_dataset_props)], ]) return steps
def _get_pipeline_steps(self, dataset_properties=None): steps = [] default_dataset_properties = {} if dataset_properties is not None and isinstance( dataset_properties, dict): default_dataset_properties.update(dataset_properties) steps.extend([ ["imputation", NumericalImputation()], ["variance_threshold", VarianceThreshold()], [ "rescaling", rescaling_components.RescalingChoice( default_dataset_properties) ], ]) return steps
def _get_pipeline_steps( self, dataset_properties: Optional[Dict[str, str]] = None, ) -> List[Tuple[str, BaseEstimator]]: steps = [] default_dataset_properties = {} if dataset_properties is not None and isinstance( dataset_properties, dict): default_dataset_properties.update(dataset_properties) steps.extend([ ("imputation", NumericalImputation()), ("variance_threshold", VarianceThreshold()), ("rescaling", rescaling_components.RescalingChoice(default_dataset_properties)), ]) return steps