class AutoML(BaseEstimator): def __init__( self, backend, time_left_for_this_task, per_run_time_limit, initial_configurations_via_metalearning=25, ensemble_size=1, ensemble_nbest=1, max_models_on_disc=1, ensemble_memory_limit=1000, seed=1, ml_memory_limit=3072, metadata_directory=None, keep_models=True, debug_mode=False, include_estimators=None, exclude_estimators=None, include_preprocessors=None, exclude_preprocessors=None, resampling_strategy='holdout-iterative-fit', resampling_strategy_arguments=None, shared_mode=False, precision=32, disable_evaluator_output=False, get_smac_object_callback=None, smac_scenario_args=None, logging_config=None, ): super(AutoML, self).__init__() self._backend = backend # self._tmp_dir = tmp_dir # self._output_dir = output_dir self._time_for_task = time_left_for_this_task self._per_run_time_limit = per_run_time_limit self._initial_configurations_via_metalearning = \ initial_configurations_via_metalearning self._ensemble_size = ensemble_size self._ensemble_nbest = ensemble_nbest self._max_models_on_disc = max_models_on_disc self._ensemble_memory_limit = ensemble_memory_limit self._seed = seed self._ml_memory_limit = ml_memory_limit self._data_memory_limit = None self._metadata_directory = metadata_directory self._keep_models = keep_models self._include_estimators = include_estimators self._exclude_estimators = exclude_estimators self._include_preprocessors = include_preprocessors self._exclude_preprocessors = exclude_preprocessors self._resampling_strategy = resampling_strategy self._resampling_strategy_arguments = resampling_strategy_arguments \ if resampling_strategy_arguments is not None else {} self._shared_mode = shared_mode self.precision = precision self._disable_evaluator_output = disable_evaluator_output self._get_smac_object_callback = get_smac_object_callback self._smac_scenario_args = smac_scenario_args self.logging_config = logging_config self._datamanager = None self._dataset_name = None self._stopwatch = StopWatch() self._logger = None self._task = None self._metric = None self._label_num = None self._parser = None self.models_ = None self.ensemble_ = None self._can_predict = False self._debug_mode = debug_mode if not isinstance(self._time_for_task, int): raise ValueError("time_left_for_this_task not of type integer, " "but %s" % str(type(self._time_for_task))) if not isinstance(self._per_run_time_limit, int): raise ValueError("per_run_time_limit not of type integer, but %s" % str(type(self._per_run_time_limit))) # After assigning and checking variables... # self._backend = Backend(self._output_dir, self._tmp_dir) def fit( self, X: np.ndarray, y: np.ndarray, task: int, metric: Scorer, X_test: Optional[np.ndarray] = None, y_test: Optional[np.ndarray] = None, feat_type: Optional[List[str]] = None, dataset_name: Optional[str] = None, only_return_configuration_space: Optional[bool] = False, load_models: bool = True, ): if self._shared_mode: # If this fails, it's likely that this is the first call to get # the data manager try: D = self._backend.load_datamanager() dataset_name = D.name except IOError: pass if dataset_name is None: dataset_name = hash_array_or_matrix(X) self._backend.save_start_time(self._seed) self._stopwatch = StopWatch() self._dataset_name = dataset_name self._stopwatch.start_task(self._dataset_name) self._logger = self._get_logger(dataset_name) if metric is None: raise ValueError('No metric given.') if not isinstance(metric, Scorer): raise ValueError('Metric must be instance of ' 'autosklearn.metrics.Scorer.') if feat_type is not None and len(feat_type) != X.shape[1]: raise ValueError('Array feat_type does not have same number of ' 'variables as X has features. %d vs %d.' % (len(feat_type), X.shape[1])) if feat_type is not None and not all( [isinstance(f, str) for f in feat_type]): raise ValueError('Array feat_type must only contain strings.') if feat_type is not None: for ft in feat_type: if ft.lower() not in ['categorical', 'numerical']: raise ValueError('Only `Categorical` and `Numerical` are ' 'valid feature types, you passed `%s`' % ft) self._data_memory_limit = None loaded_data_manager = XYDataManager( X, y, X_test=X_test, y_test=y_test, task=task, feat_type=feat_type, dataset_name=dataset_name, ) return self._fit( datamanager=loaded_data_manager, metric=metric, load_models=load_models, only_return_configuration_space=only_return_configuration_space, ) # TODO this is very old code which can be dropped! def fit_automl_dataset(self, dataset, metric, load_models=True): self._stopwatch = StopWatch() self._backend.save_start_time(self._seed) name = os.path.basename(dataset) self._stopwatch.start_task(name) self._start_task(self._stopwatch, name) self._dataset_name = name self._logger = self._get_logger(name) self._logger.debug('======== Reading and converting data ==========') # Encoding the labels will be done after the metafeature calculation! self._data_memory_limit = float(self._ml_memory_limit) / 3 loaded_data_manager = CompetitionDataManager( dataset, max_memory_in_mb=self._data_memory_limit) loaded_data_manager_str = str(loaded_data_manager).split('\n') for part in loaded_data_manager_str: self._logger.debug(part) return self._fit( datamanager=loaded_data_manager, metric=metric, load_models=load_models, ) def fit_on_datamanager(self, datamanager, metric, load_models=True): self._stopwatch = StopWatch() self._backend.save_start_time(self._seed) name = os.path.basename(datamanager.name) self._stopwatch.start_task(name) self._start_task(self._stopwatch, name) self._dataset_name = name self._logger = self._get_logger(name) self._fit( datamanager=datamanager, metric=metric, load_models=load_models, ) def _get_logger(self, name): logger_name = 'AutoML(%d):%s' % (self._seed, name) setup_logger( os.path.join(self._backend.temporary_directory, '%s.log' % str(logger_name)), self.logging_config, ) return get_logger(logger_name) @staticmethod def _start_task(watcher, task_name): watcher.start_task(task_name) @staticmethod def _stop_task(watcher, task_name): watcher.stop_task(task_name) @staticmethod def _print_load_time(basename, time_left_for_this_task, time_for_load_data, logger): time_left_after_reading = max( 0, time_left_for_this_task - time_for_load_data) logger.info('Remaining time after reading %s %5.2f sec' % (basename, time_left_after_reading)) return time_for_load_data def _do_dummy_prediction(self, datamanager, num_run): # When using partial-cv it makes no sense to do dummy predictions if self._resampling_strategy in [ 'partial-cv', 'partial-cv-iterative-fit' ]: return num_run self._logger.info("Starting to create dummy predictions.") memory_limit = int(self._ml_memory_limit) scenario_mock = unittest.mock.Mock() scenario_mock.wallclock_limit = self._time_for_task # This stats object is a hack - maybe the SMAC stats object should # already be generated here! stats = Stats(scenario_mock) stats.start_timing() ta = ExecuteTaFuncWithQueue( backend=self._backend, autosklearn_seed=self._seed, resampling_strategy=self._resampling_strategy, initial_num_run=num_run, logger=self._logger, stats=stats, metric=self._metric, memory_limit=memory_limit, disable_file_output=self._disable_evaluator_output, **self._resampling_strategy_arguments) status, cost, runtime, additional_info = \ ta.run(1, cutoff=self._time_for_task) if status == StatusType.SUCCESS: self._logger.info("Finished creating dummy predictions.") else: self._logger.error('Error creating dummy predictions: %s ', str(additional_info)) # Fail if dummy prediction fails. raise ValueError("Dummy prediction failed: %s " % str(additional_info)) return ta.num_run def _fit( self, datamanager: AbstractDataManager, metric: Scorer, load_models: bool, only_return_configuration_space: bool = False, ): # Reset learnt stuff self.models_ = None self.ensemble_ = None # Check arguments prior to doing anything! if not isinstance(self._disable_evaluator_output, (bool, list)): raise ValueError('disable_evaluator_output must be of type bool ' 'or list.') if isinstance(self._disable_evaluator_output, list): allowed_elements = ['model', 'y_optimization'] for element in self._disable_evaluator_output: if element not in allowed_elements: raise ValueError("List member '%s' for argument " "'disable_evaluator_output' must be one " "of " + str(allowed_elements)) if self._resampling_strategy not in ['holdout', 'holdout-iterative-fit', 'cv', 'cv-iterative-fit', 'partial-cv', 'partial-cv-iterative-fit', ] \ and not issubclass(self._resampling_strategy, BaseCrossValidator)\ and not issubclass(self._resampling_strategy, _RepeatedSplits)\ and not issubclass(self._resampling_strategy, BaseShuffleSplit): raise ValueError('Illegal resampling strategy: %s' % self._resampling_strategy) if self._resampling_strategy in ['partial-cv', 'partial-cv-iterative-fit', ] \ and self._ensemble_size != 0: raise ValueError("Resampling strategy %s cannot be used " "together with ensembles." % self._resampling_strategy) if self._resampling_strategy in ['partial-cv', 'cv', 'cv-iterative-fit', 'partial-cv-iterative-fit', ]\ and 'folds' not in self._resampling_strategy_arguments: self._resampling_strategy_arguments['folds'] = 5 self._backend._make_internals_directory() if self._keep_models: try: os.makedirs(self._backend.get_model_dir()) except (OSError, FileExistsError): if not self._shared_mode: raise self._metric = metric self._task = datamanager.info['task'] self._label_num = datamanager.info['label_num'] # == Pickle the data manager to speed up loading self._backend.save_datamanager(datamanager) time_for_load_data = self._stopwatch.wall_elapsed(self._dataset_name) if self._debug_mode: self._print_load_time(self._dataset_name, self._time_for_task, time_for_load_data, self._logger) # == Perform dummy predictions num_run = 1 # if self._resampling_strategy in ['holdout', 'holdout-iterative-fit']: num_run = self._do_dummy_prediction(datamanager, num_run) # = Create a searchspace # Do this before One Hot Encoding to make sure that it creates a # search space for a dense classifier even if one hot encoding would # make it sparse (tradeoff; if one hot encoding would make it sparse, # densifier and truncatedSVD would probably lead to a MemoryError, # like this we can't use some of the preprocessing methods in case # the data became sparse) self.configuration_space, configspace_path = self._create_search_space( self._backend.temporary_directory, self._backend, datamanager, include_estimators=self._include_estimators, exclude_estimators=self._exclude_estimators, include_preprocessors=self._include_preprocessors, exclude_preprocessors=self._exclude_preprocessors) if only_return_configuration_space: return self.configuration_space # == RUN ensemble builder # Do this before calculating the meta-features to make sure that the # dummy predictions are actually included in the ensemble even if # calculating the meta-features takes very long ensemble_task_name = 'runEnsemble' self._stopwatch.start_task(ensemble_task_name) elapsed_time = self._stopwatch.wall_elapsed(self._dataset_name) time_left_for_ensembles = max(0, self._time_for_task - elapsed_time) if time_left_for_ensembles <= 0: self._proc_ensemble = None # Fit only raises error when ensemble_size is not zero but # time_left_for_ensembles is zero. if self._ensemble_size > 0: raise ValueError("Not starting ensemble builder because there " "is no time left. Try increasing the value " "of time_left_for_this_task.") elif self._ensemble_size <= 0: self._proc_ensemble = None self._logger.info('Not starting ensemble builder because ' 'ensemble size is <= 0.') else: self._logger.info('Start Ensemble with %5.2fsec time left' % time_left_for_ensembles) self._proc_ensemble = self._get_ensemble_process( time_left_for_ensembles) self._proc_ensemble.start() self._stopwatch.stop_task(ensemble_task_name) # kill the datamanager as it will be re-loaded anyways from sub processes try: del self._datamanager except Exception: pass # => RUN SMAC smac_task_name = 'runSMAC' self._stopwatch.start_task(smac_task_name) elapsed_time = self._stopwatch.wall_elapsed(self._dataset_name) time_left_for_smac = max(0, self._time_for_task - elapsed_time) if self._logger: self._logger.info('Start SMAC with %5.2fsec time left' % time_left_for_smac) if time_left_for_smac <= 0: self._logger.warning("Not starting SMAC because there is no time " "left.") _proc_smac = None self._budget_type = None else: if self._per_run_time_limit is None or \ self._per_run_time_limit > time_left_for_smac: print('Time limit for a single run is higher than total time ' 'limit. Capping the limit for a single run to the total ' 'time given to SMAC (%f)' % time_left_for_smac) per_run_time_limit = time_left_for_smac else: per_run_time_limit = self._per_run_time_limit _proc_smac = AutoMLSMBO( config_space=self.configuration_space, dataset_name=self._dataset_name, backend=self._backend, total_walltime_limit=time_left_for_smac, func_eval_time_limit=per_run_time_limit, memory_limit=self._ml_memory_limit, data_memory_limit=self._data_memory_limit, watcher=self._stopwatch, start_num_run=num_run, num_metalearning_cfgs=self. _initial_configurations_via_metalearning, config_file=configspace_path, seed=self._seed, metadata_directory=self._metadata_directory, metric=self._metric, resampling_strategy=self._resampling_strategy, resampling_strategy_args=self._resampling_strategy_arguments, shared_mode=self._shared_mode, include_estimators=self._include_estimators, exclude_estimators=self._exclude_estimators, include_preprocessors=self._include_preprocessors, exclude_preprocessors=self._exclude_preprocessors, disable_file_output=self._disable_evaluator_output, get_smac_object_callback=self._get_smac_object_callback, smac_scenario_args=self._smac_scenario_args, ) self.runhistory_, self.trajectory_, self._budget_type = \ _proc_smac.run_smbo() trajectory_filename = os.path.join( self._backend.get_smac_output_directory_for_run(self._seed), 'trajectory.json') saveable_trajectory = \ [list(entry[:2]) + [entry[2].get_dictionary()] + list(entry[3:]) for entry in self.trajectory_] with open(trajectory_filename, 'w') as fh: json.dump(saveable_trajectory, fh) # Wait until the ensemble process is finished to avoid shutting down # while the ensemble builder tries to access the data if self._proc_ensemble is not None and self._ensemble_size > 0: self._proc_ensemble.join() self._proc_ensemble = None if load_models: self._load_models() return self def refit(self, X, y): if self._keep_models is not True: raise ValueError("Refit can only be called if 'keep_models==True'") if self.models_ is None or len(self.models_) == 0 or \ self.ensemble_ is None: self._load_models() # Refit is not applicable when ensemble_size is set to zero. if self.ensemble_ is None: raise ValueError( "Refit can only be called if 'ensemble_size != 0'") random_state = np.random.RandomState(self._seed) for identifier in self.models_: if identifier in self.ensemble_.get_selected_model_identifiers(): model = self.models_[identifier] # this updates the model inplace, it can then later be used in # predict method # try to fit the model. If it fails, shuffle the data. This # could alleviate the problem in algorithms that depend on # the ordering of the data. for i in range(10): try: if self._budget_type is None: _fit_and_suppress_warnings(self._logger, model, X, y) else: _fit_with_budget( X_train=X, Y_train=y, budget=identifier[2], budget_type=self._budget_type, logger=self._logger, model=model, train_indices=np.arange(len(X), dtype=int), task_type=self._task, ) break except ValueError as e: indices = list(range(X.shape[0])) random_state.shuffle(indices) X = X[indices] y = y[indices] if i == 9: raise e self._can_predict = True return self def predict(self, X, batch_size=None, n_jobs=1): """predict. Parameters ---------- X: array-like, shape = (n_samples, n_features) batch_size: int or None, defaults to None batch_size controls whether the pipelines will be called on small chunks of the data. Useful when calling the predict method on the whole array X results in a MemoryError. n_jobs: int, defaults to 1 Parallelize the predictions across the models with n_jobs processes. """ if self._keep_models is not True: raise ValueError( "Predict can only be called if 'keep_models==True'") if not self._can_predict and \ self._resampling_strategy not in ['holdout', 'holdout-iterative-fit']: raise NotImplementedError( 'Predict is currently not implemented for resampling ' 'strategy %s, please call refit().' % self._resampling_strategy) if self.models_ is None or len(self.models_) == 0 or \ self.ensemble_ is None: self._load_models() # If self.ensemble_ is None, it means that ensemble_size is set to zero. # In such cases, raise error because predict and predict_proba cannot # be called. if self.ensemble_ is None: raise ValueError("Predict and predict_proba can only be called " "if 'ensemble_size != 0'") # Parallelize predictions across models with n_jobs processes. # Each process computes predictions in chunks of batch_size rows. all_predictions = joblib.Parallel(n_jobs=n_jobs)( joblib.delayed(_model_predict)(self, X, batch_size, identifier) for identifier in self.ensemble_.get_selected_model_identifiers()) if len(all_predictions) == 0: raise ValueError( 'Something went wrong generating the predictions. ' 'The ensemble should consist of the following ' 'models: %s, the following models were loaded: ' '%s' % (str(list(self.ensemble_indices_.keys())), str(list(self.models_.keys())))) predictions = self.ensemble_.predict(all_predictions) return predictions def fit_ensemble(self, y, task=None, metric=None, precision='32', dataset_name=None, ensemble_nbest=None, ensemble_size=None): if self._resampling_strategy in [ 'partial-cv', 'partial-cv-iterative-fit' ]: raise ValueError('Cannot call fit_ensemble with resampling ' 'strategy %s.' % self._resampling_strategy) if self._logger is None: self._logger = self._get_logger(dataset_name) self._proc_ensemble = self._get_ensemble_process( 1, task, metric, precision, dataset_name, max_iterations=1, ensemble_nbest=ensemble_nbest, ensemble_size=ensemble_size) self._proc_ensemble.main() self._proc_ensemble = None self._load_models() return self def _get_ensemble_process(self, time_left_for_ensembles, task=None, metric=None, precision=None, dataset_name=None, max_iterations=None, ensemble_nbest=None, ensemble_size=None): if task is None: task = self._task else: self._task = task if metric is None: metric = self._metric else: self._metric = metric if precision is None: precision = self.precision else: self.precision = precision if dataset_name is None: dataset_name = self._dataset_name else: self._dataset_name = dataset_name if ensemble_nbest is None: ensemble_nbest = self._ensemble_nbest else: self._ensemble_nbest = ensemble_nbest if ensemble_size is None: ensemble_size = self._ensemble_size else: self._ensemble_size = ensemble_size return EnsembleBuilder( backend=self._backend, dataset_name=dataset_name, task_type=task, metric=metric, limit=time_left_for_ensembles, ensemble_size=ensemble_size, ensemble_nbest=ensemble_nbest, max_models_on_disc=self._max_models_on_disc, seed=self._seed, shared_mode=self._shared_mode, precision=precision, max_iterations=max_iterations, read_at_most=np.inf, memory_limit=self._ensemble_memory_limit, random_state=self._seed, ) def _load_models(self): if self._shared_mode: seed = -1 else: seed = self._seed self.ensemble_ = self._backend.load_ensemble(seed) if self.ensemble_: identifiers = self.ensemble_.identifiers_ self.models_ = self._backend.load_models_by_identifiers( identifiers) if len(self.models_) == 0 and self._resampling_strategy not in \ ['partial-cv', 'partial-cv-iterative-fit']: raise ValueError('No models fitted!') elif self._disable_evaluator_output is False or \ (isinstance(self._disable_evaluator_output, list) and 'model' not in self._disable_evaluator_output): model_names = self._backend.list_all_models(seed) if len(model_names) == 0 and self._resampling_strategy not in \ ['partial-cv', 'partial-cv-iterative-fit']: raise ValueError('No models fitted!') self.models_ = [] else: self.models_ = [] def score(self, X, y): # fix: Consider only index 1 of second dimension # Don't know if the reshaping should be done there or in calculate_score prediction = self.predict(X) return calculate_score(solution=y, prediction=prediction, task_type=self._task, metric=self._metric, all_scoring_functions=False) @property def cv_results_(self): results = dict() # Missing in contrast to scikit-learn # splitX_test_score - auto-sklearn does not store the scores on a split # basis # std_test_score - auto-sklearn does not store the scores on a split # basis # splitX_train_score - auto-sklearn does not compute train scores, add # flag to compute the train scores # mean_train_score - auto-sklearn does not store the train scores # std_train_score - auto-sklearn does not store the train scores # std_fit_time - auto-sklearn does not store the fit times per split # mean_score_time - auto-sklearn does not store the score time # std_score_time - auto-sklearn does not store the score time # TODO: add those arguments # TODO remove this restriction! if self._resampling_strategy in [ 'partial-cv', 'partial-cv-iterative-fit' ]: raise ValueError('Cannot call cv_results when using partial-cv!') parameter_dictionaries = dict() masks = dict() hp_names = [] # Set up dictionary for parameter values for hp in self.configuration_space.get_hyperparameters(): name = hp.name parameter_dictionaries[name] = [] masks[name] = [] hp_names.append(name) mean_test_score = [] mean_fit_time = [] params = [] status = [] budgets = [] for run_key in self.runhistory_.data: run_value = self.runhistory_.data[run_key] config_id = run_key.config_id config = self.runhistory_.ids_config[config_id] param_dict = config.get_dictionary() params.append(param_dict) mean_test_score.append(self._metric._optimum - (self._metric._sign * run_value.cost)) mean_fit_time.append(run_value.time) budgets.append(run_key.budget) s = run_value.status if s == StatusType.SUCCESS: status.append('Success') elif s == StatusType.DONOTADVANCE: status.append('Success (but do not advance to higher budget)') elif s == StatusType.TIMEOUT: status.append('Timeout') elif s == StatusType.CRASHED: status.append('Crash') elif s == StatusType.ABORT: status.append('Abort') elif s == StatusType.MEMOUT: status.append('Memout') else: raise NotImplementedError(s) for hp_name in hp_names: if hp_name in param_dict: hp_value = param_dict[hp_name] mask_value = False else: hp_value = np.NaN mask_value = True parameter_dictionaries[hp_name].append(hp_value) masks[hp_name].append(mask_value) results['mean_test_score'] = np.array(mean_test_score) results['mean_fit_time'] = np.array(mean_fit_time) results['params'] = params results['rank_test_scores'] = scipy.stats.rankdata( 1 - results['mean_test_score'], method='min') results['status'] = status results['budgets'] = budgets for hp_name in hp_names: masked_array = ma.MaskedArray(parameter_dictionaries[hp_name], masks[hp_name]) results['param_%s' % hp_name] = masked_array return results def sprint_statistics(self): cv_results = self.cv_results_ sio = io.StringIO() sio.write('auto-sklearn results:\n') sio.write(' Dataset name: %s\n' % self._dataset_name) sio.write(' Metric: %s\n' % self._metric) idx_success = np.where( np.array([ status in [ 'Success', 'Success (but do not advance to higher budget)' ] for status in cv_results['status'] ]))[0] if len(idx_success) > 0: if not self._metric._optimum: idx_best_run = np.argmin( cv_results['mean_test_score'][idx_success]) else: idx_best_run = np.argmax( cv_results['mean_test_score'][idx_success]) best_score = cv_results['mean_test_score'][idx_success][ idx_best_run] sio.write(' Best validation score: %f\n' % best_score) num_runs = len(cv_results['status']) sio.write(' Number of target algorithm runs: %d\n' % num_runs) num_success = sum([ s in ['Success', 'Success (but do not advance to higher budget)'] for s in cv_results['status'] ]) sio.write(' Number of successful target algorithm runs: %d\n' % num_success) num_crash = sum([s == 'Crash' for s in cv_results['status']]) sio.write(' Number of crashed target algorithm runs: %d\n' % num_crash) num_timeout = sum([s == 'Timeout' for s in cv_results['status']]) sio.write(' Number of target algorithms that exceeded the time ' 'limit: %d\n' % num_timeout) num_memout = sum([s == 'Memout' for s in cv_results['status']]) sio.write(' Number of target algorithms that exceeded the memory ' 'limit: %d\n' % num_memout) return sio.getvalue() def get_models_with_weights(self): if self.models_ is None or len(self.models_) == 0 or \ self.ensemble_ is None: self._load_models() return self.ensemble_.get_models_with_weights(self.models_) def show_models(self): models_with_weights = self.get_models_with_weights() with io.StringIO() as sio: sio.write("[") for weight, model in models_with_weights: sio.write("(%f, %s),\n" % (weight, model)) sio.write("]") return sio.getvalue() def _create_search_space(self, tmp_dir, backend, datamanager, include_estimators=None, exclude_estimators=None, include_preprocessors=None, exclude_preprocessors=None): task_name = 'CreateConfigSpace' self._stopwatch.start_task(task_name) configspace_path = os.path.join(tmp_dir, 'space.pcs') configuration_space = pipeline.get_configuration_space( datamanager.info, include_estimators=include_estimators, exclude_estimators=exclude_estimators, include_preprocessors=include_preprocessors, exclude_preprocessors=exclude_preprocessors) configuration_space = self.configuration_space_created_hook( datamanager, configuration_space) sp_string = pcs.write(configuration_space) backend.write_txt_file(configspace_path, sp_string, 'Configuration space') self._stopwatch.stop_task(task_name) return configuration_space, configspace_path def configuration_space_created_hook(self, datamanager, configuration_space): return configuration_space
def main(predictions_dir, basename, task_type, metric, limit, output_dir, ensemble_size=None, seed=1, indices_output_dir="."): watch = StopWatch() watch.start_task("ensemble_builder") task_type = STRING_TO_TASK_TYPES[task_type] used_time = 0 time_iter = 0 index_run = 0 current_num_models = 0 logging.basicConfig(filename=os.path.join(predictions_dir, "ensemble_%d.log" % seed), level=logging.DEBUG) while used_time < limit: logging.debug("Time left: %f", limit - used_time) logging.debug("Time last iteration: %f", time_iter) # Load the true labels of the validation data true_labels = np.load( os.path.join(predictions_dir, "true_labels_ensemble.npy")) # Load the predictions from the models dir_ensemble = os.path.join(predictions_dir, "predictions_ensemble_%s/" % seed) dir_valid = os.path.join(predictions_dir, "predictions_valid_%s/" % seed) dir_test = os.path.join(predictions_dir, "predictions_test_%s/" % seed) paths_ = [dir_ensemble, dir_valid, dir_test] exists = [os.path.isdir(dir_) for dir_ in paths_] if not exists[0]: #all(exists): logging.debug("Prediction directory %s does not exist!" % dir_ensemble) time.sleep(2) used_time = watch.wall_elapsed("ensemble_builder") continue dir_ensemble_list = sorted(os.listdir(dir_ensemble)) dir_valid_list = sorted(os.listdir(dir_valid)) if exists[1] else [] dir_test_list = sorted(os.listdir(dir_test)) if exists[2] else [] if len(dir_ensemble_list) == 0: logging.debug("Directories are empty") time.sleep(2) used_time = watch.wall_elapsed("ensemble_builder") continue if len(dir_ensemble_list) <= current_num_models: logging.debug("Nothing has changed since the last time") time.sleep(2) used_time = watch.wall_elapsed("ensemble_builder") continue watch.start_task("ensemble_iter_" + str(index_run)) # List of num_runs (which are in the filename) which will be included # later include_num_runs = [] re_num_run = re.compile(r'_([0-9]*)\.npy$') if ensemble_size is not None: # Keeps track of the single scores of each model in our ensemble scores_nbest = [] # The indices of the model that are currently in our ensemble indices_nbest = [] # The names of the models model_names = [] # The num run of the models num_runs = [] model_names_to_scores = dict() model_idx = 0 for model_name in dir_ensemble_list: predictions = np.load(os.path.join(dir_ensemble, model_name)) score = evaluator.calculate_score(true_labels, predictions, task_type, metric, predictions.shape[1]) model_names_to_scores[model_name] = score num_run = int(re_num_run.search(model_name).group(1)) if ensemble_size is not None: if score <= 0.001: # include_num_runs.append(True) logging.error("Model only predicts at random: " + model_name + " has score: " + str(score)) # If we have less models in our ensemble than ensemble_size add the current model if it is better than random elif len(scores_nbest) < ensemble_size: scores_nbest.append(score) indices_nbest.append(model_idx) include_num_runs.append(num_run) model_names.append(model_name) num_runs.append(num_run) else: # Take the worst performing model in our ensemble so far idx = np.argmin(np.array([scores_nbest])) # If the current model is better than the worst model in our ensemble replace it by the current model if (scores_nbest[idx] < score): logging.debug( "Worst model in our ensemble: %s with " "score %f will be replaced by model %s " "with score %f", model_names[idx], scores_nbest[idx], model_name, score) # Exclude the old model del scores_nbest[idx] scores_nbest.append(score) del include_num_runs[idx] del indices_nbest[idx] indices_nbest.append(model_idx) include_num_runs.append(num_run) del model_names[idx] model_names.append(model_name) del num_runs[idx] num_runs.append(num_run) # Otherwise exclude the current model from the ensemble else: #include_num_runs.append(True) pass else: # Load all predictions that are better than random if score <= 0.001: #include_num_runs.append(True) logging.error("Model only predicts at random: " + model_name + " has score: " + str(score)) else: include_num_runs.append(num_run) model_idx += 1 indices_to_model_names = dict() indices_to_run_num = dict() for i, model_name in enumerate(dir_ensemble_list): num_run = int(re_num_run.search(model_name).group(1)) if num_run in include_num_runs: num_indices = len(indices_to_model_names) indices_to_model_names[num_indices] = model_name indices_to_run_num[num_indices] = num_run #logging.info("Indices to model names:") #logging.info(indices_to_model_names) #for i, item in enumerate(sorted(model_names_to_scores.items(), # key=lambda t: t[1])): # logging.info("%d: %s", i, item) include_num_runs = set(include_num_runs) all_predictions_train = [] for i, model_name in enumerate(dir_ensemble_list): num_run = int(re_num_run.search(model_name).group(1)) if num_run in include_num_runs: predictions = np.load(os.path.join(dir_ensemble, model_name)) all_predictions_train.append(predictions) all_predictions_valid = [] for i, model_name in enumerate(dir_valid_list): num_run = int(re_num_run.search(model_name).group(1)) if num_run in include_num_runs: predictions = np.load(os.path.join(dir_valid, model_name)) all_predictions_valid.append(predictions) all_predictions_test = [] for i, model_name in enumerate(dir_test_list): num_run = int(re_num_run.search(model_name).group(1)) if num_run in include_num_runs: predictions = np.load(os.path.join(dir_test, model_name)) all_predictions_test.append(predictions) if len(all_predictions_train) == len(all_predictions_test) == len( all_predictions_valid) == 0: logging.error("All models do just random guessing") time.sleep(2) continue elif len(all_predictions_train) == 1: logging.debug("Only one model so far we just copy its predictions") ensemble_members_run_numbers = {0: 1.0} # Output the score logging.info("Training performance: %f" % np.max(model_names_to_scores.values())) else: try: indices, trajectory = ensemble_selection( np.array(all_predictions_train), true_labels, ensemble_size, task_type, metric) logging.info("Trajectory and indices!") logging.info(trajectory) logging.info(indices) except ValueError as e: logging.error("Caught ValueError: " + str(e)) used_time = watch.wall_elapsed("ensemble_builder") continue except Exception as e: logging.error("Caught error! %s", e.message) used_time = watch.wall_elapsed("ensemble_builder") continue # Output the score logging.info("Training performance: %f" % trajectory[-1]) # Print the ensemble members: ensemble_members_run_numbers = dict() ensemble_members = Counter(indices).most_common() ensemble_members_string = "Ensemble members:\n" logging.info(ensemble_members) for ensemble_member in ensemble_members: weight = float(ensemble_member[1]) / len(indices) ensemble_members_string += \ (" %s; weight: %10f; performance: %10f\n" % (indices_to_model_names[ensemble_member[0]], weight, model_names_to_scores[indices_to_model_names[ensemble_member[0]]])) ensemble_members_run_numbers[indices_to_run_num[ ensemble_member[0]]] = weight logging.info(ensemble_members_string) # Save the ensemble indices for later use! filename_indices = os.path.join(indices_output_dir, str(index_run).zfill(5) + ".indices") logging.info(ensemble_members_run_numbers) with open(filename_indices, "w") as fh: pickle.dump(ensemble_members_run_numbers, fh) # Save predictions for valid and test data set if len(dir_valid_list) == len(dir_ensemble_list): ensemble_predictions_valid = np.mean( all_predictions_valid[indices.astype(int)], axis=0) filename_test = os.path.join( output_dir, basename + '_valid_' + str(index_run).zfill(3) + '.predict') data_util.save_predictions( os.path.join(predictions_dir, filename_test), ensemble_predictions_valid) else: logging.info("Could not find as many validation set predictions " "as ensemble predictions!.") if len(dir_test_list) == len(dir_ensemble_list): ensemble_predictions_test = np.mean( all_predictions_test[indices.astype(int)], axis=0) filename_test = os.path.join( output_dir, basename + '_test_' + str(index_run).zfill(3) + '.predict') data_util.save_predictions( os.path.join(predictions_dir, filename_test), ensemble_predictions_test) else: logging.info("Could not find as many test set predictions as " "ensemble predictions!") current_num_models = len(dir_ensemble_list) watch.stop_task("ensemble_iter_" + str(index_run)) time_iter = watch.get_wall_dur("ensemble_iter_" + str(index_run)) used_time = watch.wall_elapsed("ensemble_builder") index_run += 1 return
def main(predictions_dir, basename, task_type, metric, limit, output_dir, ensemble_size=None, seed=1, indices_output_dir="."): watch = StopWatch() watch.start_task("ensemble_builder") task_type = STRING_TO_TASK_TYPES[task_type] used_time = 0 time_iter = 0 index_run = 0 current_num_models = 0 logging.basicConfig(filename=os.path.join(predictions_dir, "ensemble_%d.log" % seed), level=logging.DEBUG) while used_time < limit: logging.debug("Time left: %f", limit - used_time) logging.debug("Time last iteration: %f", time_iter) # Load the true labels of the validation data true_labels = np.load(os.path.join(predictions_dir, "true_labels_ensemble.npy")) # Load the predictions from the models dir_ensemble = os.path.join(predictions_dir, "predictions_ensemble_%s/" % seed) dir_valid = os.path.join(predictions_dir, "predictions_valid_%s/" % seed) dir_test = os.path.join(predictions_dir, "predictions_test_%s/" % seed) paths_ = [dir_ensemble, dir_valid, dir_test] exists = [os.path.isdir(dir_) for dir_ in paths_] if not exists[0]: #all(exists): logging.debug("Prediction directory %s does not exist!" % dir_ensemble) time.sleep(2) used_time = watch.wall_elapsed("ensemble_builder") continue dir_ensemble_list = sorted(os.listdir(dir_ensemble)) dir_valid_list = sorted(os.listdir(dir_valid)) if exists[1] else [] dir_test_list = sorted(os.listdir(dir_test)) if exists[2] else [] if len(dir_ensemble_list) == 0: logging.debug("Directories are empty") time.sleep(2) used_time = watch.wall_elapsed("ensemble_builder") continue if len(dir_ensemble_list) <= current_num_models: logging.debug("Nothing has changed since the last time") time.sleep(2) used_time = watch.wall_elapsed("ensemble_builder") continue watch.start_task("ensemble_iter_" + str(index_run)) # List of num_runs (which are in the filename) which will be included # later include_num_runs = [] re_num_run = re.compile(r'_([0-9]*)\.npy$') if ensemble_size is not None: # Keeps track of the single scores of each model in our ensemble scores_nbest = [] # The indices of the model that are currently in our ensemble indices_nbest = [] # The names of the models model_names = [] # The num run of the models num_runs = [] model_names_to_scores = dict() model_idx = 0 for model_name in dir_ensemble_list: predictions = np.load(os.path.join(dir_ensemble, model_name)) score = evaluator.calculate_score(true_labels, predictions, task_type, metric, predictions.shape[1]) model_names_to_scores[model_name] = score num_run = int(re_num_run.search(model_name).group(1)) if ensemble_size is not None: if score <= 0.001: # include_num_runs.append(True) logging.error("Model only predicts at random: " + model_name + " has score: " + str(score)) # If we have less models in our ensemble than ensemble_size add the current model if it is better than random elif len(scores_nbest) < ensemble_size: scores_nbest.append(score) indices_nbest.append(model_idx) include_num_runs.append(num_run) model_names.append(model_name) num_runs.append(num_run) else: # Take the worst performing model in our ensemble so far idx = np.argmin(np.array([scores_nbest])) # If the current model is better than the worst model in our ensemble replace it by the current model if(scores_nbest[idx] < score): logging.debug("Worst model in our ensemble: %s with " "score %f will be replaced by model %s " "with score %f", model_names[idx], scores_nbest[idx], model_name, score) # Exclude the old model del scores_nbest[idx] scores_nbest.append(score) del include_num_runs[idx] del indices_nbest[idx] indices_nbest.append(model_idx) include_num_runs.append(num_run) del model_names[idx] model_names.append(model_name) del num_runs[idx] num_runs.append(num_run) # Otherwise exclude the current model from the ensemble else: #include_num_runs.append(True) pass else: # Load all predictions that are better than random if score <= 0.001: #include_num_runs.append(True) logging.error("Model only predicts at random: " + model_name + " has score: " + str(score)) else: include_num_runs.append(num_run) model_idx += 1 indices_to_model_names = dict() indices_to_run_num = dict() for i, model_name in enumerate(dir_ensemble_list): num_run = int(re_num_run.search(model_name).group(1)) if num_run in include_num_runs: num_indices = len(indices_to_model_names) indices_to_model_names[num_indices] = model_name indices_to_run_num[num_indices] = num_run #logging.info("Indices to model names:") #logging.info(indices_to_model_names) #for i, item in enumerate(sorted(model_names_to_scores.items(), # key=lambda t: t[1])): # logging.info("%d: %s", i, item) include_num_runs = set(include_num_runs) all_predictions_train = [] for i, model_name in enumerate(dir_ensemble_list): num_run = int(re_num_run.search(model_name).group(1)) if num_run in include_num_runs: predictions = np.load(os.path.join(dir_ensemble, model_name)) all_predictions_train.append(predictions) all_predictions_valid = [] for i, model_name in enumerate(dir_valid_list): num_run = int(re_num_run.search(model_name).group(1)) if num_run in include_num_runs: predictions = np.load(os.path.join(dir_valid, model_name)) all_predictions_valid.append(predictions) all_predictions_test = [] for i, model_name in enumerate(dir_test_list): num_run = int(re_num_run.search(model_name).group(1)) if num_run in include_num_runs: predictions = np.load(os.path.join(dir_test, model_name)) all_predictions_test.append(predictions) if len(all_predictions_train) == len(all_predictions_test) == len(all_predictions_valid) == 0: logging.error("All models do just random guessing") time.sleep(2) continue elif len(all_predictions_train) == 1: logging.debug("Only one model so far we just copy its predictions") ensemble_members_run_numbers = {0: 1.0} # Output the score logging.info("Training performance: %f" % np.max( model_names_to_scores.values())) else: try: indices, trajectory = ensemble_selection( np.array(all_predictions_train), true_labels, ensemble_size, task_type, metric) logging.info("Trajectory and indices!") logging.info(trajectory) logging.info(indices) except ValueError as e: logging.error("Caught ValueError: " + str(e)) used_time = watch.wall_elapsed("ensemble_builder") continue except Exception as e: logging.error("Caught error! %s", e.message) used_time = watch.wall_elapsed("ensemble_builder") continue # Output the score logging.info("Training performance: %f" % trajectory[-1]) # Print the ensemble members: ensemble_members_run_numbers = dict() ensemble_members = Counter(indices).most_common() ensemble_members_string = "Ensemble members:\n" logging.info(ensemble_members) for ensemble_member in ensemble_members: weight = float(ensemble_member[1]) / len(indices) ensemble_members_string += \ (" %s; weight: %10f; performance: %10f\n" % (indices_to_model_names[ensemble_member[0]], weight, model_names_to_scores[indices_to_model_names[ensemble_member[0]]])) ensemble_members_run_numbers[indices_to_run_num[ ensemble_member[0]]] = weight logging.info(ensemble_members_string) # Save the ensemble indices for later use! filename_indices = os.path.join(indices_output_dir, str(index_run).zfill(5) + ".indices") logging.info(ensemble_members_run_numbers) with open(filename_indices, "w") as fh: pickle.dump(ensemble_members_run_numbers, fh) # Save predictions for valid and test data set if len(dir_valid_list) == len(dir_ensemble_list): ensemble_predictions_valid = np.mean( all_predictions_valid[indices.astype(int)], axis=0) filename_test = os.path.join(output_dir, basename + '_valid_' + str(index_run).zfill(3) + '.predict') data_util.save_predictions(os.path.join(predictions_dir, filename_test), ensemble_predictions_valid) else: logging.info("Could not find as many validation set predictions " "as ensemble predictions!.") if len(dir_test_list) == len(dir_ensemble_list): ensemble_predictions_test = np.mean( all_predictions_test[indices.astype(int)], axis=0) filename_test = os.path.join(output_dir, basename + '_test_' + str(index_run).zfill(3) + '.predict') data_util.save_predictions(os.path.join(predictions_dir, filename_test), ensemble_predictions_test) else: logging.info("Could not find as many test set predictions as " "ensemble predictions!") current_num_models = len(dir_ensemble_list) watch.stop_task("ensemble_iter_" + str(index_run)) time_iter = watch.get_wall_dur("ensemble_iter_" + str(index_run)) used_time = watch.wall_elapsed("ensemble_builder") index_run += 1 return