コード例 #1
0
def test_update_params__no_request__expect_no_change():
    old_params = {
        "foo": 1,
        "bar": {
            "baz": 2,
            "boop": [7, 8, 9],
            "bing": {
                "bonk": 3,
            }
        },
        "boop": [4, 5, 6],
    }
    update_request = {}
    expected_new_params = {
        "foo": 1,
        "bar": {
            "baz": 2,
            "boop": [7, 8, 9],
            "bing": {
                "bonk": 3,
            }
        },
        "boop": [4, 5, 6],
    }
    actual_new_params = update_params(old_params, update_request)
    assert actual_new_params == expected_new_params
コード例 #2
0
ファイル: calibration.py プロジェクト: emmamcbryde/AuTuMN-1
    def run_model_with_params(self, proposed_params: dict):
        """
        Run the model with a set of params.
        """
        logger.info(f"Running iteration {self.iter_num}...")

        # Update default parameters to use calibration params.
        param_updates = {"end_time": self.end_time}
        for i, param_name in enumerate(self.param_list):
            param_updates[param_name] = proposed_params[i]

        params = copy.deepcopy(self.model_parameters)
        params["default"] = update_params(params["default"], param_updates)
        scenario = Scenario(self.model_builder, 0, params)
        scenario.run()
        self.latest_scenario = scenario

        _req_outs = [
            o for o in self.targeted_outputs if "prevX" in o["output_key"]
        ]
        requested_outputs = [o["output_key"] for o in _req_outs]
        requested_times = {o["output_key"]: o["years"] for o in _req_outs}
        pp = post_proc.PostProcessing(
            scenario.model,
            requested_outputs=requested_outputs,
            requested_times=requested_times,
            multipliers=self.multipliers,
        )

        return scenario, pp
コード例 #3
0
def test_update_params__deep_array_request__expect_updated():
    old_params = {
        "foo": 1,
        "bar": {
            "baz": 2,
            "boop": [7, 8, 9],
            "bing": {
                "bonk": 3,
            }
        },
        "boop": [4, 5, 6],
    }
    update_request = {"bar.boop(0)": 1}
    expected_new_params = {
        "foo": 1,
        "bar": {
            "baz": 2,
            "boop": [1, 8, 9],
            "bing": {
                "bonk": 3,
            }
        },
        "boop": [4, 5, 6],
    }
    actual_new_params = update_params(old_params, update_request)
    assert actual_new_params == expected_new_params
コード例 #4
0
def test_update_params__multiple_shallow_requests__expect_updated():
    old_params = {
        "foo": 1,
        "bank": 10,
        "bar": {
            "baz": 2,
            "boop": [7, 8, 9],
            "bing": {
                "bonk": 3,
            }
        },
        "boop": [4, 5, 6],
    }
    update_request = {"foo": 2, "bank": 3}
    expected_new_params = {
        "foo": 2,
        "bank": 3,
        "bar": {
            "baz": 2,
            "boop": [7, 8, 9],
            "bing": {
                "bonk": 3,
            }
        },
        "boop": [4, 5, 6],
    }
    actual_new_params = update_params(old_params, update_request)
    assert actual_new_params == expected_new_params
コード例 #5
0
ファイル: mixing_opti.py プロジェクト: emmamcbryde/AuTuMN-1
def run_root_model(country=Region.UNITED_KINGDOM, calibrated_params={}):
    """
    This function runs a model to simulate the past epidemic (up until 1/7/2020) using a given calibrated parameter set.
    Returns an integrated model for the past epidemic.
    """
    running_model = RegionApp(country)
    build_model = running_model.build_model

    params = copy.deepcopy(running_model.params)
    # update params with optimisation default config
    params["default"].update(opti_params["default"])
    # update params with calibrated parameters
    params["default"] = update_params(params['default'], calibrated_params)

    # prepare importation rates for herd immunity testing
    params["default"]["data"] = {
        'times_imported_cases': [0],
        'n_imported_cases': [0]
    }
    params["default"]["end_time"] = PHASE_2_START_TIME
    params["scenario_start_time"] = PHASE_2_START_TIME - 1

    scenario_0 = Scenario(build_model, idx=0, params=params)
    scenario_0.run()

    return scenario_0.model
コード例 #6
0
def test_update_params__dict_in_array_request__expect_updated():
    old_params = {
        "foo": [{
            "a": 1
        }, {
            "a": 2
        }, {
            "a": 3
        }],
    }
    update_request = {"foo(1).a": 4}
    expected_new_params = {
        "foo": [{
            "a": 1
        }, {
            "a": 4
        }, {
            "a": 3
        }],
    }
    actual_new_params = update_params(old_params, update_request)
    assert actual_new_params == expected_new_params
コード例 #7
0
ファイル: mixing_opti.py プロジェクト: emmamcbryde/AuTuMN-1
def run_all_phases(decision_variables,
                   country=Region.UNITED_KINGDOM,
                   config=0,
                   calibrated_params={},
                   mode="by_age"):
    running_model = RegionApp(country)
    build_model = running_model.build_model

    if mode == "by_location":
        new_decision_variables = {
            "other_locations": decision_variables[0],
            "school": decision_variables[1],
            "work": decision_variables[2]
        }
        decision_variables = new_decision_variables

    params = copy.deepcopy(running_model.params)
    # update params with optimisation default config
    params["default"].update(opti_params["default"])
    # update params with calibrated parameters
    params["default"] = update_params(params['default'], calibrated_params)

    # prepare importation rates for herd immunity testing
    params["default"]["data"] = {
        'times_imported_cases': [0],
        'n_imported_cases': [0]
    }

    params["scenarios"][1] = build_params_for_phases_2_and_3(
        decision_variables, config, mode)

    run_models = build_model_runner(model_name="covid_19",
                                    param_set_name=country,
                                    build_model=build_model,
                                    params=params)

    run_models()
コード例 #8
0
ファイル: mixing_opti.py プロジェクト: emmamcbryde/AuTuMN-1
def objective_function(decision_variables,
                       root_model,
                       mode="by_age",
                       country=Region.UNITED_KINGDOM,
                       config=0,
                       calibrated_params={}):
    """
    :param decision_variables: dictionary containing
        - mixing multipliers by age as a list if mode == "by_age"    OR
        - location multipliers as a list if mode == "by_location"
    :param root_model: integrated model supposed to model the past epidemic
    :param mode: either "by_age" or "by_location"
    :param country: the country name
    :param config: the id of the configuration being considered
    :param calibrated_params: a dictionary containing a set of calibrated parameters
    """
    running_model = RegionApp(country)
    build_model = running_model.build_model
    params = copy.deepcopy(running_model.params)

    # reformat decision vars if locations
    if mode == "by_location":
        new_decision_variables = {
            "other_locations": decision_variables[0],
            "school": decision_variables[1],
            "work": decision_variables[2]
        }
        decision_variables = new_decision_variables

    # Define scenario-1-specific params
    sc_1_params_update = build_params_for_phases_2_and_3(
        decision_variables, config, mode)

    # Rebuild the default parameters
    params["default"].update(opti_params["default"])
    params["default"] = update_params(params['default'], calibrated_params)
    params['scenario_start_time'] = PHASE_2_START_TIME - 1

    # Create scenario 1
    sc_1_params = update_params(params['default'], sc_1_params_update)
    params["scenarios"][1] = sc_1_params
    scenario_1 = Scenario(build_model, idx=1, params=params)

    # Run scenario 1
    scenario_1.run(base_model=root_model)
    models = [root_model, scenario_1.model]

    #____________________________       Perform diagnostics         ______________________
    # How many deaths and years of life lost during Phase 2 and 3
    start_phase2_index = models[1].derived_outputs["times"].index(
        PHASE_2_START_TIME)
    end_phase2_index = models[1].derived_outputs["times"].index(
        phase_2_end[config])
    total_nb_deaths = sum(
        models[1].derived_outputs["infection_deathsXall"][start_phase2_index:])
    years_of_life_lost = sum(
        models[1].derived_outputs["years_of_life_lost"][start_phase2_index:])

    # What proportion immune at end of Phase 2
    recovered_indices = [
        i for i in range(len(models[1].compartment_names))
        if "recovered" in models[1].compartment_names[i]
    ]
    nb_reco = sum(
        [models[1].outputs[end_phase2_index, i] for i in recovered_indices])
    total_pop = sum([
        models[1].outputs[end_phase2_index, i]
        for i in range(len(models[1].compartment_names))
    ])
    prop_immune = nb_reco / total_pop

    # Has herd immunity been reached?
    herd_immunity = has_immunity_been_reached(models[1], end_phase2_index)

    return herd_immunity, total_nb_deaths, years_of_life_lost, prop_immune, models
コード例 #9
0
 def update_func(ps: dict):
     return update_params(ps, param_updates)