コード例 #1
0
ファイル: classes.py プロジェクト: teojb/software
 def __init__(s, iN, iNerr, iE, iEerr):
     sub = Object()
     euf = lambda n, e: gaussian(iN, iNerr)(n) * gaussian(iE, iEerr)(e)
     sub.pmap = n.fromfunction(euf, (GRIDSIZE, GRIDSIZE))
     sub.pmap /= sub.pmap.sum()
     sub.centroid = (iN, iE)
     s.objects = {'sub': sub}
     s.derr = Object(100, 0.01, 1)
     s.herr = Object(100, 0.1, 1)
コード例 #2
0
ファイル: classes.py プロジェクト: teojb/software
    def hObs(s, obj, heading, err):
        print 'called'
        initn, inite = s.objects[obj].centroid
        subn, sube = s.objects['sub'].centroid
        prevd = toPolar(initn - subn, inite - sube)[0]
        newn, newe = toCartesian(prevd, heading)
        deltan, deltae = newn - initn, newe - inite
        expHeading = toPolar(initn - subn, inite - sube)[1]

        # Input rejection.
        #if abs(heading - expHeading) / expHeading > AUTOREJFRAC: return False

        # Bayesian update.
        print s.objects['sub'].centroid
        uf = lambda n, e: gaussian(heading, err)(toPolar(n - s.objects['sub'].centroid[0], e - s.objects['sub'].centroid[1])[0])
        
        print 'adding...', s.objects[obj].events
        s.objects[obj].events.append(Event(uf, curUT()))
        print s.objects[obj].events
    
        # Reverse Bayesian error estimation.
        #huf = lambda he: gaussian(heading - expHeading, err)(he)
        #s.herr.events.append(Event(huf, curUT(), 1))

        # Covariance
        s.doCovariance(s.objects[obj], deltan, deltae, prevd * err * pi/180) # Approximate conversion of heading error to position error using sin(x) ~ x in radians.
コード例 #3
0
ファイル: classes.py プロジェクト: teojb/software
    def dObs(s, obj, distance, err):
        initn, inite = s.objects[obj].centroid
        subn, sube = s.objects['sub'].centroid
        prevh = toPolar(initn - subn, inite - sube)[1]
        newn, newe = toCartesian(distance, prevh)
        deltan, deltae = newn - initn, newe - inite
        expDistance = toPolar(initn - subn, inite - sube)[0]

        # Input rejection.
        if abs(distance - expDistance) > AUTOREJFRAC: return False

        # Bayesian update.
        uf = lambda n, e: gaussian(distance, err)(toPolar(n - s.objects['sub'].centroid[0], e - s.objects['sub'].centroid[0])[0])
        s.objects[obj].events.append(Event(uf, curUT(), 2))
        
        # Reverse Bayesian error estimation.
        duf = lambda de: gaussian(distance / expDistance, err / expDistance)(de)
        s.derr.events.append(Event(duf, curUT(), 1))
        
        # Covariance
        s.doCovariance(s.objects[obj], deltan, deltae, err) # Distance error is close enough to position error.
コード例 #4
0
ファイル: classes.py プロジェクト: teojb/software
 def move(s, dN, dE, err):
     tpmap = n.ones((GRIDSIZE, GRIDSIZE))
     ncentroid = (s.objects['sub'].centroid[0] + dN, s.objects['sub'].centroid[1] + dE)
     for r in range(GRIDSIZE):
         for c in range(GRIDSIZE):
             ar = int(round(r - dN / GRIDSCALE))
             ac = int(round(c - dE / GRIDSCALE))
             try: tpmap[r][c] = s.objects['sub'].pmap[ar][ac]
             except: tpmap[r][c] = gaussian(0, s.objects['sub'].error)(toPolar(ncentroid[0] - r*GRIDSCALE, ncentroid[1] - c*GRIDSCALE)[0])
     tpmap /= tpmap.sum()
     s.objects['sub'].pmap = tpmap
     s.objects['sub'].rcCentroid()
コード例 #5
0
ファイル: classes.py プロジェクト: teojb/software
 def doCovariance(s, obj, deltan, deltae, error):
     for o, c in obj.covariances.iteritems():
         iposn, ipose = s.objects[o].centroid
         uposn, upose = iposn + deltan, ipose + deltae
         cuf = lambda n, e: (gaussian(uposn, error)(n) * gaussian(upose, error)(e))**c
         obj.events.append(Event(uf, curUT(), 2))