def crossvalidate((Gstrn, lstrn, Gstst, lstst, L, trainalg)): import auxil.supervisedclass as sc if trainalg == 1: classifier = sc.Maxlike(Gstrn, lstrn) elif trainalg == 2: classifier = sc.Ffnbp(Gstrn, lstrn, L) elif trainalg == 3: classifier = sc.Ffncg(Gstrn, lstrn, L) elif trainalg == 4: classifier = sc.Svm(Gstrn, lstrn) if classifier.train(): return classifier.test(Gstst, lstst) else: return None
def crossvalidate((Gstrn, lstrn, Gstst, lstst, L, epochs, trainalg)): import auxil.supervisedclass as sc if trainalg == 1: classifier = sc.Maxlike(Gstrn, lstrn) elif trainalg == 2: classifier = sc.Gausskernel(Gstrn, lstrn) elif trainalg == 3: classifier = sc.Ffnbp(Gstrn, lstrn, L, epochs) elif trainalg == 4: classifier = sc.Ffncg(Gstrn, lstrn, L, epochs) elif trainalg == 5: classifier = sc.Ffnekf(Gstrn, lstrn, L, epochs) elif trainalg == 6: classifier = sc.Dnn_keras(Gstrn, lstrn, L, epochs) elif trainalg == 7: classifier = sc.Svm(Gstrn, lstrn) if classifier.train() is not None: return classifier.test(Gstst, lstst) else: return None
def main(): usage = ''' Usage: -------------------------------------- Supervised classification of multispectral images python %s [OPTIONS] filename shapefile Options: -h this help -p <list> RGB band positions to be included (default all) e.g. -p [1,2,3] -a <int> algorithm 1=MaxLike 2=Gausskernel 3=NNet(backprop) 4=NNet(congrad) 5=NNet(Kalman) 6=Dnn(tensorflow) 7=SVM -e <int> number of epochs (default 100) -t <float> fraction for training (default 0.67) -v use validation (reserve half of training data for validation) -P generate class probability image (not available for MaxLike) -n suppress graphical output -L <list> list of hidden neurons in each hidden layer (default [10]) If the input file is named path/filenbasename.ext then The output classification file is named path/filebasename_class.ext the class probabilities output file is named path/filebasename_classprobs.ext and the test results file is named path/filebasename_<classifier>.tst -------------------------------------'''%sys.argv[0] outbuffer = 100 options, args = getopt.getopt(sys.argv[1:],'hnvPp:t:e:a:L:') pos = None probs = False L = [10] trainalg = 1 epochs = 100 graphics = True validation = False trainfrac = 0.67 for option, value in options: if option == '-h': print usage return elif option == '-p': pos = eval(value) elif option == '-n': graphics = False elif option == '-v': validation = True elif option == '-t': trainfrac = eval(value) elif option == '-e': epochs = eval(value) elif option == '-a': trainalg = eval(value) elif option == '-L': L = eval(value) elif option == '-P': probs = True if len(args) != 2: print 'Incorrect number of arguments' print usage sys.exit(1) if trainalg == 1: algorithm = 'MaxLike' elif trainalg == 2: algorithm = 'Gausskernel' elif trainalg == 3: algorithm = 'NNet(Backprop)' elif trainalg == 4: algorithm = 'NNet(Congrad)' elif trainalg == 5: algorithm = 'NNet(Kalman)' elif trainalg == 6: algorithm = 'Dnn(tensorflow)' else: algorithm = 'SVM' print 'Training with %s'%algorithm infile = args[0] trnfile = args[1] gdal.AllRegister() if infile: inDataset = gdal.Open(infile,GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize bands = inDataset.RasterCount geotransform = inDataset.GetGeoTransform() else: return if pos is None: pos = range(1,bands+1) N = len(pos) rasterBands = [] for b in pos: rasterBands.append(inDataset.GetRasterBand(b)) # output files path = os.path.dirname(infile) basename = os.path.basename(infile) root, ext = os.path.splitext(basename) outfile = '%s/%s_class%s'%(path,root,ext) tstfile = '%s/%s_%s.tst'%(path,root,algorithm) if (trainalg in (2,3,4,5,6)) and probs: # class probabilities file probfile = '%s/%s_classprobs%s'%(path,root,ext) else: probfile = None # get the training data Xs,Ls,K,classnames = rs.readshp(trnfile,inDataset,pos) m = Ls.shape[0] # stretch the pixel vectors to [-1,1] for ffn, dnn maxx = np.max(Xs,0) minx = np.min(Xs,0) for j in range(len(pos)): Xs[:,j] = 2*(Xs[:,j]-minx[j])/(maxx[j]-minx[j]) - 1.0 # random permutation of training data idx = np.random.permutation(m) Xs = Xs[idx,:] Ls = Ls[idx,:] # train on trainfrac of training examples, rest for testing Xstrn = Xs[:int(trainfrac*m),:] Lstrn = Ls[:int(trainfrac*m),:] Xstst = Xs[int(trainfrac*m):,:] Lstst = Ls[int(trainfrac*m):,:] # setup output datasets driver = inDataset.GetDriver() outDataset = driver.Create(outfile,cols,rows,1,GDT_Byte) projection = inDataset.GetProjection() if geotransform is not None: outDataset.SetGeoTransform(geotransform) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) if probfile: probDataset = driver.Create(probfile,cols,rows,K,GDT_Byte) if geotransform is not None: probDataset.SetGeoTransform(geotransform) if projection is not None: probDataset.SetProjection(projection) probBands = [] for k in range(K): probBands.append(probDataset.GetRasterBand(k+1)) # initialize classifier if trainalg == 1: classifier = sc.Maxlike(Xstrn,Lstrn) elif trainalg == 2: classifier = sc.Gausskernel(Xstrn,Lstrn) elif trainalg == 3: classifier = sc.Ffnbp(Xstrn,Lstrn,L,epochs,validation) elif trainalg == 4: classifier = sc.Ffncg(Xstrn,Lstrn,L,epochs,validation) elif trainalg == 5: classifier = sc.Ffnekf(Xstrn,Lstrn,L,epochs,validation) elif trainalg == 6: # classifier = sc.Dnn_learn(Xstrn,Lstrn,L,epochs) # classifier = sc.Dnn_core(Xstrn,Lstrn,L,epochs) classifier = sc.Dnn_keras(Xstrn,Lstrn,L,epochs) elif trainalg == 7: classifier = sc.Svm(Xstrn,Lstrn) # train it print 'training on %i pixel vectors...' % np.max(classifier._Gs.shape) print 'classes: %s'%str(classnames) start = time.time() result = classifier.train() print 'elapsed time %s' %str(time.time()-start) if result is not None: if (trainalg in [3,4,5]) and graphics: # the cost arrays are returned in result cost = np.log(result[0]) costv = np.log(result[1]) ymax = np.max(cost) #ymin = np.min(cost)-1 ymin = 5.0 xmax = len(cost) plt.plot(range(xmax),costv,'r',range(xmax),cost,'b') plt.axis([0,xmax,ymin,ymax]) plt.title('Log(Cross entropy)') plt.xlabel('Epoch') # classify the image print 'classifying...' start = time.time() tile = np.zeros((outbuffer*cols,N),dtype=np.float32) for row in range(rows/outbuffer): print 'row: %i'%(row*outbuffer) for j in range(N): tile[:,j] = rasterBands[j].ReadAsArray(0,row*outbuffer,cols,outbuffer).ravel() tile[:,j] = 2*(tile[:,j]-minx[j])/(maxx[j]-minx[j]) - 1.0 cls, Ms = classifier.classify(tile) outBand.WriteArray(np.reshape(cls,(outbuffer,cols)),0,row*outbuffer) if probfile and Ms is not None: Ms = np.byte(Ms*255) for k in range(K): probBands[k].WriteArray(np.reshape(Ms[:,k],(outbuffer,cols)),0,row*outbuffer) outBand.FlushCache() print 'elapsed time %s' %str(time.time()-start) outDataset = None inDataset = None if probfile: for probBand in probBands: probBand.FlushCache() probDataset = None print 'class probabilities written to: %s'%probfile print 'thematic map written to: %s'%outfile if (trainalg in [3,4,5]) and graphics: plt.show() if tstfile: with open(tstfile,'w') as f: print >>f, algorithm +'test results for %s'%infile print >>f, time.asctime() print >>f, 'Classification image: %s'%outfile print >>f, 'Class probabilities image: %s'%probfile print >>f, Lstst.shape[0],Lstst.shape[1] classes, _ = classifier.classify(Xstst) labels = np.argmax(Lstst,axis=1)+1 for i in range(len(classes)): print >>f, classes[i], labels[i] f.close() print 'test results written to: %s'%tstfile print 'done' else: print 'an error occured' return
def main(): usage = ''' Usage: --------------------------------------------------------- python %s [-p bandPositions] [- a algorithm] [-L number of hidden neurons] [-P generate class probabilities image] filename trainShapefile bandPositions is a list, e.g., -p [1,2,4] algorithm 1=MaxLike 2=NNet(backprop) 3=NNet(congrad) 4=SVM If the input file is named path/filenbasename.ext then The output classification file is named path/filebasename_class.ext the class probabilities output file is named path/filebasename_classprobs.ext and the test results file is named path/filebasename_<classifier>.tst --------------------------------------------------------''' %sys.argv[0] options, args = getopt.getopt(sys.argv[1:],'hnPp:a:L:') pos = None probs = False L = 8 trainalg = 1 graphics = True for option, value in options: if option == '-h': print usage return elif option == '-p': pos = eval(value) elif option == '-n': graphics = False elif option == '-a': trainalg = eval(value) elif option == '-L': L = eval(value) elif option == '-P': probs = True if len(args) != 2: print 'Incorrect number of arguments' print usage sys.exit(1) if trainalg == 1: algorithm = 'MaxLike' elif trainalg == 2: algorithm = 'NNet(Backprop)' elif trainalg == 3: algorithm = 'NNet(Congrad)' else: algorithm = 'SVM' infile = args[0] trnfile = args[1] gdal.AllRegister() if infile: inDataset = gdal.Open(infile,GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize bands = inDataset.RasterCount projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: gt = list(geotransform) else: print 'No geotransform available' return imsr = osr.SpatialReference() imsr.ImportFromWkt(projection) else: return if pos is None: pos = range(1,bands+1) N = len(pos) rasterBands = [] for b in pos: rasterBands.append(inDataset.GetRasterBand(b)) # output files path = os.path.dirname(infile) basename = os.path.basename(infile) root, ext = os.path.splitext(basename) outfile = '%s/%s_class%s'%(path,root,ext) tstfile = '%s/%s_%s.tst'%(path,root,algorithm) if (trainalg in (2,3,4)) and probs: # class probabilities file probfile = '%s/%s_classprobs%s'%(path,root,ext) else: probfile = None # training data trnDriver = ogr.GetDriverByName('ESRI Shapefile') trnDatasource = trnDriver.Open(trnfile,0) trnLayer = trnDatasource.GetLayer() trnsr = trnLayer.GetSpatialRef() # coordinate transformation from training to image projection ct = osr.CoordinateTransformation(trnsr,imsr) # number of classes K = 1 feature = trnLayer.GetNextFeature() while feature: classid = feature.GetField('CLASS_ID') if int(classid)>K: K = int(classid) feature = trnLayer.GetNextFeature() trnLayer.ResetReading() K += 1 # es kann losgehen print '=========================' print 'supervised classification' print '=========================' print time.asctime() print 'image: '+infile print 'training: '+trnfile print 'algorithm: '+algorithm # loop through the polygons Gs = [] # train observations ls = [] # class labels classnames = '{unclassified' classids = set() print 'reading training data...' for i in range(trnLayer.GetFeatureCount()): feature = trnLayer.GetFeature(i) classid = str(feature.GetField('CLASS_ID')) classname = feature.GetField('CLASS_NAME') if classid not in classids: classnames += ', '+ classname classids = classids | set(classid) # label for this ROI l = [0 for i in range(K)] l[int(classid)] = 1.0 polygon = feature.GetGeometryRef() # transform to same projection as image polygon.Transform(ct) # convert to a Shapely object poly = shapely.wkt.loads(polygon.ExportToWkt()) # transform the boundary to pixel coords in numpy bdry = np.array(poly.boundary) bdry[:,0] = bdry[:,0]-gt[0] bdry[:,1] = bdry[:,1]-gt[3] GT = np.mat([[gt[1],gt[2]],[gt[4],gt[5]]]) bdry = bdry*np.linalg.inv(GT) # polygon in pixel coords polygon1 = asPolygon(bdry) # raster over the bounding rectangle minx,miny,maxx,maxy = map(int,list(polygon1.bounds)) pts = [] for i in range(minx,maxx+1): for j in range(miny,maxy+1): pts.append((i,j)) multipt = MultiPoint(pts) # intersection as list intersection = np.array(multipt.intersection(polygon1),dtype=np.int).tolist() # cut out the bounded image cube cube = np.zeros((maxy-miny+1,maxx-minx+1,len(rasterBands))) k=0 for band in rasterBands: cube[:,:,k] = band.ReadAsArray(minx,miny,maxx-minx+1,maxy-miny+1) k += 1 # get the training vectors for (x,y) in intersection: Gs.append(cube[y-miny,x-minx,:]) ls.append(l) polygon = None polygon1 = None feature.Destroy() trnDatasource.Destroy() classnames += '}' m = len(ls) print str(m) + ' training pixel vectors were read in' Gs = np.array(Gs) ls = np.array(ls) # stretch the pixel vectors to [-1,1] for ffn maxx = np.max(Gs,0) minx = np.min(Gs,0) for j in range(N): Gs[:,j] = 2*(Gs[:,j]-minx[j])/(maxx[j]-minx[j]) - 1.0 # random permutation of training data idx = np.random.permutation(m) Gs = Gs[idx,:] ls = ls[idx,:] # train on 2/3 training examples Gstrn = Gs[0:2*m//3,:] lstrn = ls[0:2*m//3,:] Gstst = Gs[2*m//3:,:] lstst = ls[2*m//3:,:] # setup output datasets driver = inDataset.GetDriver() outDataset = driver.Create(outfile,cols,rows,1,GDT_Byte) projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) if probfile: probDataset = driver.Create(probfile,cols,rows,K,GDT_Byte) if geotransform is not None: probDataset.SetGeoTransform(tuple(gt)) if projection is not None: probDataset.SetProjection(projection) probBands = [] for k in range(K): probBands.append(probDataset.GetRasterBand(k+1)) # initialize classifier if trainalg == 1: classifier = sc.Maxlike(Gstrn,lstrn) elif trainalg == 2: classifier = sc.Ffnbp(Gstrn,lstrn,L) elif trainalg == 3: classifier = sc.Ffncg(Gstrn,lstrn,L) elif trainalg == 4: classifier = sc.Svm(Gstrn,lstrn) # train it print 'training on %i pixel vectors...' % np.shape(Gstrn)[0] start = time.time() result = classifier.train() print 'elapsed time %s' %str(time.time()-start) if result: if (trainalg in [2,3]) and graphics: cost = np.log10(result) ymax = np.max(cost) ymin = np.min(cost) xmax = len(cost) plt.plot(range(xmax),cost,'k') plt.axis([0,xmax,ymin-1,ymax]) plt.title('Log(Cross entropy)') plt.xlabel('Epoch') # classify the image print 'classifying...' start = time.time() tile = np.zeros((cols,N),dtype=np.float32) for row in range(rows): for j in range(N): tile[:,j] = rasterBands[j].ReadAsArray(0,row,cols,1) tile[:,j] = 2*(tile[:,j]-minx[j])/(maxx[j]-minx[j]) - 1.0 cls, Ms = classifier.classify(tile) outBand.WriteArray(np.reshape(cls,(1,cols)),0,row) if probfile: Ms = np.byte(Ms*255) for k in range(K): probBands[k].WriteArray(np.reshape(Ms[k,:],(1,cols)),0,row) outBand.FlushCache() print 'elapsed time %s' %str(time.time()-start) outDataset = None inDataset = None if probfile: for probBand in probBands: probBand.FlushCache() probDataset = None print 'class probabilities written to: %s'%probfile K = lstrn.shape[1]+1 print 'thematic map written to: %s'%outfile if trainalg in [2,3]: plt.show() if tstfile: with open(tstfile,'w') as f: print >>f, algorithm +'test results for %s'%infile print >>f, time.asctime() print >>f, 'Classification image: %s'%outfile print >>f, 'Class probabilities image: %s'%probfile print >>f, lstst.shape[0],lstst.shape[1] classes, _ = classifier.classify(Gstst) labels = np.argmax(lstst,axis=1)+1 for i in range(len(classes)): print >>f, classes[i], labels[i] f.close() print 'test results written to: %s'%tstfile print 'done' else: print 'an error occured' return
def main(): gdal.AllRegister() path = auxil.select_directory('Input directory') if path: os.chdir(path) # input image infile = auxil.select_infile(title='Image file') if infile: inDataset = gdal.Open(infile, GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize bands = inDataset.RasterCount projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: gt = list(geotransform) else: print 'No geotransform available' return imsr = osr.SpatialReference() imsr.ImportFromWkt(projection) else: return pos = auxil.select_pos(bands) if not pos: return N = len(pos) rasterBands = [] for b in pos: rasterBands.append(inDataset.GetRasterBand(b)) # training algorithm trainalg = auxil.select_integer(1, msg='1:Maxlike,2:Backprop,3:Congrad,4:SVM') if not trainalg: return # training data (shapefile) trnfile = auxil.select_infile(filt='.shp', title='Train shapefile') if trnfile: trnDriver = ogr.GetDriverByName('ESRI Shapefile') trnDatasource = trnDriver.Open(trnfile, 0) trnLayer = trnDatasource.GetLayer() trnsr = trnLayer.GetSpatialRef() else: return tstfile = auxil.select_outfile(filt='.tst', title='Test results file') if not tstfile: print 'No test output' # outfile outfile, outfmt = auxil.select_outfilefmt(title='Classification file') if not outfile: return if trainalg in (2, 3, 4): # class probabilities file, hidden neurons probfile, probfmt = auxil.select_outfilefmt(title='Probabilities file') else: probfile = None if trainalg in (2, 3): L = auxil.select_integer(8, 'Number of hidden neurons') if not L: return # coordinate transformation from training to image projection ct = osr.CoordinateTransformation(trnsr, imsr) # number of classes K = 1 feature = trnLayer.GetNextFeature() while feature: classid = feature.GetField('CLASS_ID') if int(classid) > K: K = int(classid) feature = trnLayer.GetNextFeature() trnLayer.ResetReading() K += 1 print '=========================' print 'supervised classification' print '=========================' print time.asctime() print 'image: ' + infile print 'training: ' + trnfile if trainalg == 1: print 'Maximum Likelihood' elif trainalg == 2: print 'Neural Net (Backprop)' elif trainalg == 3: print 'Neural Net (Congrad)' else: print 'Support Vector Machine' # loop through the polygons Gs = [] # train observations ls = [] # class labels classnames = '{unclassified' classids = set() print 'reading training data...' for i in range(trnLayer.GetFeatureCount()): feature = trnLayer.GetFeature(i) classid = str(feature.GetField('CLASS_ID')) classname = feature.GetField('CLASS_NAME') if classid not in classids: classnames += ', ' + classname classids = classids | set(classid) l = [0 for i in range(K)] l[int(classid)] = 1.0 polygon = feature.GetGeometryRef() # transform to same projection as image polygon.Transform(ct) # convert to a Shapely object poly = shapely.wkt.loads(polygon.ExportToWkt()) # transform the boundary to pixel coords in numpy bdry = np.array(poly.boundary) bdry[:, 0] = bdry[:, 0] - gt[0] bdry[:, 1] = bdry[:, 1] - gt[3] GT = np.mat([[gt[1], gt[2]], [gt[4], gt[5]]]) bdry = bdry * np.linalg.inv(GT) # polygon in pixel coords polygon1 = asPolygon(bdry) # raster over the bounding rectangle minx, miny, maxx, maxy = map(int, list(polygon1.bounds)) pts = [] for i in range(minx, maxx + 1): for j in range(miny, maxy + 1): pts.append((i, j)) multipt = MultiPoint(pts) # intersection as list intersection = np.array(multipt.intersection(polygon1), dtype=np.int).tolist() # cut out the bounded image cube cube = np.zeros((maxy - miny + 1, maxx - minx + 1, len(rasterBands))) k = 0 for band in rasterBands: cube[:, :, k] = band.ReadAsArray(minx, miny, maxx - minx + 1, maxy - miny + 1) k += 1 # get the training vectors for (x, y) in intersection: Gs.append(cube[y - miny, x - minx, :]) ls.append(l) polygon = None polygon1 = None feature.Destroy() trnDatasource.Destroy() classnames += '}' m = len(ls) print str(m) + ' training pixel vectors were read in' Gs = np.array(Gs) ls = np.array(ls) # stretch the pixel vectors to [-1,1] for ffn maxx = np.max(Gs, 0) minx = np.min(Gs, 0) for j in range(N): Gs[:, j] = 2 * (Gs[:, j] - minx[j]) / (maxx[j] - minx[j]) - 1.0 # random permutation of training data idx = np.random.permutation(m) Gs = Gs[idx, :] ls = ls[idx, :] # setup output datasets driver = gdal.GetDriverByName(outfmt) outDataset = driver.Create(outfile, cols, rows, 1, GDT_Byte) projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) if probfile: driver = gdal.GetDriverByName(probfmt) probDataset = driver.Create(probfile, cols, rows, K, GDT_Byte) if geotransform is not None: probDataset.SetGeoTransform(tuple(gt)) if projection is not None: probDataset.SetProjection(projection) probBands = [] for k in range(K): probBands.append(probDataset.GetRasterBand(k + 1)) if tstfile: # train on 2/3 training examples Gstrn = Gs[0:2 * m // 3, :] lstrn = ls[0:2 * m // 3, :] Gstst = Gs[2 * m // 3:, :] lstst = ls[2 * m // 3:, :] else: Gstrn = Gs lstrn = ls if trainalg == 1: classifier = sc.Maxlike(Gstrn, lstrn) elif trainalg == 2: classifier = sc.Ffnbp(Gstrn, lstrn, L) elif trainalg == 3: classifier = sc.Ffncg(Gstrn, lstrn, L) elif trainalg == 4: classifier = sc.Svm(Gstrn, lstrn) print 'training on %i pixel vectors...' % np.shape(Gstrn)[0] start = time.time() result = classifier.train() print 'elapsed time %s' % str(time.time() - start) if result: if trainalg in [2, 3]: cost = np.log10(result) ymax = np.max(cost) ymin = np.min(cost) xmax = len(cost) plt.plot(range(xmax), cost, 'k') plt.axis([0, xmax, ymin - 1, ymax]) plt.title('Log(Cross entropy)') plt.xlabel('Epoch') # classify the image print 'classifying...' start = time.time() tile = np.zeros((cols, N)) for row in range(rows): for j in range(N): tile[:, j] = rasterBands[j].ReadAsArray(0, row, cols, 1) tile[:, j] = 2 * (tile[:, j] - minx[j]) / (maxx[j] - minx[j]) - 1.0 cls, Ms = classifier.classify(tile) outBand.WriteArray(np.reshape(cls, (1, cols)), 0, row) if probfile: Ms = np.byte(Ms * 255) for k in range(K): probBands[k].WriteArray(np.reshape(Ms[k, :], (1, cols)), 0, row) outBand.FlushCache() print 'elapsed time %s' % str(time.time() - start) outDataset = None inDataset = None if probfile: for probBand in probBands: probBand.FlushCache() probDataset = None print 'class probabilities written to: %s' % probfile K = lstrn.shape[1] + 1 if (outfmt == 'ENVI') and (K < 19): # try to make an ENVI classification header file hdr = header.Header() headerfile = outfile + '.hdr' f = open(headerfile) line = f.readline() envihdr = '' while line: envihdr += line line = f.readline() f.close() hdr.read(envihdr) hdr['file type'] = 'ENVI Classification' hdr['classes'] = str(K) classlookup = '{0' for i in range(1, 3 * K): classlookup += ', ' + str(str(ctable[i])) classlookup += '}' hdr['class lookup'] = classlookup hdr['class names'] = classnames f = open(headerfile, 'w') f.write(str(hdr)) f.close() print 'thematic map written to: %s' % outfile if trainalg in [2, 3]: print 'please close the cross entropy plot to continue' plt.show() if tstfile: with open(tstfile, 'w') as f: print >> f, 'FFN test results for %s' % infile print >> f, time.asctime() print >> f, 'Classification image: %s' % outfile print >> f, 'Class probabilities image: %s' % probfile print >> f, lstst.shape[0], lstst.shape[1] classes, _ = classifier.classify(Gstst) labels = np.argmax(lstst, axis=1) + 1 for i in range(len(classes)): print >> f, classes[i], labels[i] f.close() print 'test results written to: %s' % tstfile print 'done' else: print 'an error occured' return