コード例 #1
0
def annotations(config_file, data_path):
    """ Generate training meta data from the annotations in preparation for training.

    CONFIG_FILE: the config file with settings for the experiment.
    DATA_PATH: the path to the folder with the data files.
    """

    config = read_config(config_file.name)
    extracted_path = os.path.join(data_path, config['extracted_path'])
    train_ann_dir = os.path.join(data_path, config['train_ann_dir'])
    test_ann_dir = os.path.join(data_path, config['test_ann_dir'])
    train_annotations_file = os.path.join(data_path,
                                          config['train_annotations_full'])
    test_annotations_file = os.path.join(data_path,
                                         config['test_annotations_full'])
    vid_frame_size = config['vid_frame_size']
    sequence_size = config['sequence_size']
    stride = config['ann_stride']
    fps = config['fps']

    print('Generating training annotations file.')
    process_anns(train_ann_dir, train_annotations_file, extracted_path,
                 vid_frame_size, sequence_size, stride, fps)

    print('Generating test annotations file.')
    process_anns(test_ann_dir, test_annotations_file, extracted_path,
                 vid_frame_size, sequence_size, stride, fps)
コード例 #2
0
def videos(config_file, data_path):
    """ Extract audio and video frames.

    CONFIG_FILE: the config file with settings for the experiment.
    DATA_PATH: the path to the folder with the data files.
    """

    config = read_config(config_file.name)
    test_ann_dir = os.path.join(data_path, config['test_ann_dir'])
    train_ann_dir = os.path.join(data_path, config['train_ann_dir'])
    vid_save_path = os.path.join(data_path, config['vid_save_path'])
    extracted_path = os.path.join(data_path, config['extracted_path'])
    fps = config['fps']
    eps = config['eps']
    start_ts_filename = config['start_ts']

    if not os.path.exists(vid_save_path):
        raise Exception('video directory ' + vid_save_path + ' does not exist')

    create_dir(extracted_path)

    vids = os.listdir(vid_save_path)
    nvids = str(len(vids))

    for i, vid in enumerate(vids):
        print('[' + str(i + 1) + '/' + nvids + ' @ ' + str(fps) +
              'fps] extracting ' + vid)
        extract_av(vid, test_ann_dir, train_ann_dir, fps, eps,
                   start_ts_filename, vid_save_path, extracted_path)
コード例 #3
0
ファイル: download.py プロジェクト: tuanchien/asd
def videos(config_file, data_path):
    """ Download the videos used in the annotations.

    CONFIG_FILE: the config file with settings for the experiment.
    DATA_PATH: the path to the root folder where the videos will be saved.
    """

    # Read configuration
    config = read_config(config_file.name)

    vid_save_path = os.path.join(data_path, config['vid_save_path'])
    download_path = os.path.join(data_path, config['download_path'])
    train_ann_dir = os.path.join(data_path, config['train_ann_dir'])
    test_ann_dir = os.path.join(data_path, config['test_ann_dir'])

    create_dir(vid_save_path)
    create_dir(download_path)

    vid_urls = get_vid_urls(download_path)
    annotated_vids = get_annotated_vids(train_ann_dir, test_ann_dir)

    for vid_id in annotated_vids:
        if vid_id in vid_urls:
            vid = vid_urls[vid_id]
            url = vid['url']
            file_name = vid['file_name']
            file_hash = vid['file_hash']

            print(f'Downloading: {url}')
            download_file(url, file_name, vid_save_path, file_hash)
        else:
            print(
                f"Warning: video url list does not contain annotated video with id: {vid_id}. Skipping."
            )
コード例 #4
0
def mfccs(config_file, data_path):
    """ Extract MFCCs from the dataset.

    CONFIG_FILE: the config file with settings for the experiment.
    DATA_PATH: the path to the folder with the data files.
    """

    config = read_config(config_file.name)
    extracted_path = os.path.join(data_path, config['extracted_path'])
    train_ann_dir = os.path.join(data_path, config['train_ann_dir'])
    test_ann_dir = os.path.join(data_path, config['test_ann_dir'])
    stride = config['stride']
    window_size = config['mfcc_window_size']
    nmfcc = config['nmfcc']
    eps = config['eps']
    apply_mean = config['apply_mean']
    apply_stddev = config['apply_stddev']

    dirs = os.listdir(extracted_path)
    ndirs = str(len(dirs))

    for i, vid_id in enumerate(dirs):
        print('[' + str(i + 1) + '/' + ndirs + '] generating MFCCs for ' +
              vid_id)
        mfccs = gen_mfcc(vid_id, extracted_path, train_ann_dir, test_ann_dir,
                         stride, window_size, nmfcc, eps, apply_mean,
                         apply_stddev)
        output_path = os.path.join(extracted_path, vid_id, 'mfcc.pkl')
        pickle.dump(mfccs, open(output_path, 'wb'))
コード例 #5
0
ファイル: download.py プロジェクト: tuanchien/asd
def annotations(config_file, data_path):
    """ Download and extract the annotations.

    CONFIG_FILE: the config file with settings for the experiment.
    DATA_PATH: the path to the root folder where the annotations will be saved.
    """

    # Read configuration
    config = read_config(config_file.name)
    download_path = os.path.join(data_path, config['download_path'])
    create_dir(download_path)

    print('Fetching training annotations')
    download_file(ava_asd_train_ann_url,
                  'train.tar.bz2',
                  download_path,
                  ava_asd_train_ann_hash,
                  extract=True)

    print('Fetching testing annotations')
    download_file(ava_asd_test_ann_url,
                  'test.tar.bz2',
                  download_path,
                  ava_asd_test_ann_hash,
                  extract=True)
コード例 #6
0
ファイル: train.py プロジェクト: tuanchien/asd
def main(config_file, data_path, bot_config):
    """ Train the audio visual model.

    CONFIG_FILE: the config file with settings for the experiment.
    DATA_PATH: the path to the folder with the data files.
    """

    # Start time for measuring experiment
    start = timer()

    # Enable memory growth on GPU
    set_gpu_memory_growth(True)

    # Read configs
    config = read_config(config_file.name)

    # Load model
    model, loss = get_model(config)

    # Load data generators
    train_gen = AvGenerator.from_dict(data_path, DatasetSubset.train, config)
    test_gen = AvGenerator.from_dict(data_path, DatasetSubset.valid, config)

    print(train_gen)
    print(test_gen)

    # Create list of callbacks to use for training
    sess_id = secrets.token_urlsafe(5)  # Create session id
    callbacks = get_callbacks(data_path, sess_id, config, bot_config)
    callbacks.append(train_gen)
    callbacks.append(test_gen)

    # Make optimiser and get loss weights
    optimiser = get_optimiser(config)
    loss_weights = get_loss_weights(config)

    # Compile model
    model.compile(loss=loss, optimizer=optimiser, metrics=['accuracy'], loss_weights=loss_weights)

    # Dump a summary
    model.summary()

    # Run training
    epochs = config['epochs']
    model.fit(train_gen.dataset, epochs=epochs, validation_data=test_gen.dataset, callbacks=callbacks)

    # Print duration
    end = timer()
    duration = end - start
    print(f"Duration: {datetime.timedelta(seconds=duration)}")
コード例 #7
0
ファイル: train.py プロジェクト: tuanchien/asd
def get_callbacks(data_path, sess_id, config, bot_config_file):
    """
    Get a list of callbacks to use for training.
    """

    # Get config values
    mode = config['mode']
    tb_logdir = config['tb_logdir']
    save_best_only = config['save_best_only']
    use_earlystopping = config['use_earlystopping']
    es_patience = config['es_patience']

    callbacks = []

    # Model checkpoint
    model_file_pattern = sess_id + '-' + mode + '-weights-{epoch:02d}-{val_main_out_accuracy:.4f}.hdf5'
    experiment_path = os.path.join(data_path, 'experiments', sess_id)
    pathlib.Path(experiment_path).mkdir(parents=True, exist_ok=True)
    model_path = os.path.join(experiment_path, model_file_pattern)
    callbacks.append(ModelCheckpoint(model_path, monitor='val_main_out_accuracy', verbose=1,
                                     save_best_only=save_best_only, mode='max'))

    # Tensorboard
    tb_session_dir = os.path.join(tb_logdir, sess_id)  # Puts the results in a unique TensorBoard session
    pathlib.Path(tb_session_dir).mkdir(parents=True, exist_ok=True)
    callbacks.append(TensorBoard(log_dir=tb_session_dir, update_freq='batch'))

    # Early stopping
    if use_earlystopping:
        es_patience = es_patience
        callbacks.append(EarlyStopping(monitor='val_main_out_loss', patience=es_patience))

    # Telegram reporting bot
    if bot_config_file is not None:
        bot_config = read_config(bot_config_file.name)
        callbacks.append(UpdateBot.from_dict(bot_config, sess_id=sess_id))

    return callbacks
コード例 #8
0
def main(config_file, data_path, weights_file, weights_path, legacy):
    """ Evaluate a model based on the test set.

    CONFIG_FILE: the config file with settings for the experiment.
    DATA_PATH: the path to the folder with the data files.
    WEIGHTS: the weights to load into the model.
    """

    # Start time for measuring experiment
    start = timer()

    if weights_path is not None and legacy:
        print(
            "Error: --legacy can only be used with --weights-file, not --weights-path"
        )
    else:
        # Enable memory growth on GPU
        set_gpu_memory_growth(True)

        # Read config
        config = read_config(config_file.name)

        # Get test annotations directory
        test_ann_dir = os.path.join(data_path, config['test_ann_dir'])

        # Get loss weights
        optimiser = get_optimiser(config)
        loss_weights = get_loss_weights(config)

        if weights_file is not None:
            # Load model
            model, loss = get_model(config, weights_file=weights_file)

            # Compile model
            model.compile(loss=loss,
                          optimizer=optimiser,
                          metrics=['accuracy'],
                          loss_weights=loss_weights)

            # Data generator
            test_gen = AvGenerator.from_dict(data_path, DatasetSubset.test,
                                             config)

            if not legacy:
                result = evaluate(model, weights_file, test_gen, test_ann_dir)
                display_evaluation(result)
            else:
                evaluate_legacy(model, weights_file, test_gen, loss, optimiser,
                                loss_weights)
        elif weights_path is not None:
            # Load model
            model, loss = get_model(config, weights_file=None)

            # Compile model
            model.compile(loss=loss,
                          optimizer=optimiser,
                          metrics=['accuracy'],
                          loss_weights=loss_weights)

            # List all weights in directory
            weights_files = glob.glob(f"{weights_path}/*.hdf5")
            weights_files = natsorted(weights_files)

            # Data generator
            test_gen = AvGenerator.from_dict(data_path, DatasetSubset.test,
                                             config)

            # Evaluate each weights file
            columns = [
                'weights', 'audio_accuracy', 'video_accuracy', 'main_accuracy',
                'audio_map', 'video_map', 'main_map', 'audio_ap_sp',
                'video_ap_sp', 'main_ap_sp', 'audio_ap_ns', 'video_ap_ns',
                'main_ap_ns', 'audio_auc', 'video_auc', 'main_auc',
                'orig_main_map', 'orig_video_map', 'orig_audio_map'
            ]
            keys_remove = [
                'y_true', 'y_audio_class_ids', 'y_video_class_ids',
                'y_main_class_ids'
            ]

            results = []
            for weights_file in weights_files:
                # Set weights
                model.load_weights(weights_file)

                # Get results and append
                result = evaluate(model, weights_file, test_gen, test_ann_dir)

                # Remove unnecessary pairs
                for k in keys_remove:
                    del result[k]

                # Add weights name to results and move to the start of the OrderedDict
                result['weights'] = weights_file
                result.move_to_end('weights', last=False)

                results.append(result)

            file_name = 'evaluation-results.csv'
            save_csv(results, columns, file_name)
            print(f"Saved evaluation results to: {file_name}")

    # Print duration
    end = timer()
    duration = end - start
    print(f"Duration: {datetime.timedelta(seconds=duration)}")
コード例 #9
0
    len_n = len(rnspeak)

    print(
        'Generated subset of speaking: {} ({}% of original), nonspeaking: {} ({}% of original)'
        .format(len_s, len_s / n_filtered, len_n, len_n / n_filtered))

    return rspeak, rnspeak


def generate_and_save_subset(in_file, out_file, config):
    """
    Generate and save annotation subsets for the given annotation according to the filtering rules.
    """
    speak, nspeak = filter_and_sample(in_file, config)
    merged = speak + nspeak
    random.shuffle(merged)
    save_to_file(merged, out_file)


if __name__ == '__main__':
    config = read_config('config.yaml')

    # Set seed for debug. Remove later.
    np.random.seed(0)

    generate_and_save_subset(config['train_annotations_full'],
                             config['train_annotations_subset'], config)

    generate_and_save_subset(config['test_annotations_full'],
                             config['test_annotations_subset'], config)