コード例 #1
0
ファイル: outAIMEC.py プロジェクト: avaframe/AvaFrame
def visuComparison(rasterTransfo, inputs, cfgPath, cfgFlags):
    """
    Plot and save the comparison between current simulation and Reference
    in the run-out area
    """
    ####################################
    # Get input data
    # read paths
    projectName = cfgPath['projectName']
    # read data
    s = rasterTransfo['s']
    l = rasterTransfo['l']
    indStartOfRunout = rasterTransfo['indStartOfRunout']
    sStart = s[indStartOfRunout]
    runoutLength = inputs['runoutLength']
    refData = inputs['refData']
    compData = inputs['compData']
    refRasterMask = inputs['refRasterMask']
    newRasterMask = inputs['newRasterMask']
    i = inputs['i']
    resType = inputs['resType']
    unit = pU.cfgPlotUtils['unit' + resType]
    name = pU.cfgPlotUtils['name' + resType]
    thresholdArray = inputs['thresholdArray']
    thresholdValue = thresholdArray[-1]
    contCmap = cfgPath['contCmap']

    ############################################
    # Figure: Raster comparison (mask for the pThreshold given in the ini file)
    fig = plt.figure(figsize=(pU.figW * 2, pU.figH))
    ax1 = plt.subplot2grid((1, 2), (0, 0))

    # get color map
    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       thresholdValue,
                                                       np.nanmax((refData)),
                                                       continuous=contCmap)
    cmap.set_bad(color='w')
    refDataPlot = np.ma.masked_where(refData == 0.0, refData)
    ref0, im = pU.NonUnifIm(ax1,
                            l,
                            s,
                            refDataPlot,
                            'l [m]',
                            's [m]',
                            extent=[l.min(),
                                    l.max(),
                                    s.min(),
                                    s.max()],
                            cmap=cmap,
                            norm=norm)
    ax1.axhline(y=s[indStartOfRunout],
                color='k',
                linestyle='--',
                label='start of run-out area point : %.1f °' %
                rasterTransfo['startOfRunoutAreaAngle'])
    ax1.set_title('Reference %s in the RunOut area' % name + '\n' +
                  '%s threshold: %.1f %s' % (name, thresholdValue, unit))
    pU.addColorBar(im, ax1, ticks, unit)

    yLim = s[max(np.max(np.nonzero(np.any(refData != 0, axis=1))[0]),
                 np.max(np.nonzero(np.any(compData != 0, axis=1))[0]))]
    ax1.set_ylim([0, yLim])
    ax1.legend(loc='lower right')
    pU.putAvaNameOnPlot(ax1, projectName)

    ax2 = plt.subplot2grid((1, 2), (0, 1))
    colorsList = [[0, 0, 1], [1, 1, 1], [1, 0, 0]]
    cmap = matplotlib.colors.ListedColormap(colorsList)
    cmap.set_under(color='b')
    cmap.set_over(color='r')
    cmap.set_bad(alpha=0)
    data = newRasterMask - refRasterMask
    data = np.ma.masked_where(data == 0.0, data)
    ref1, im1 = pU.NonUnifIm(ax2,
                             l,
                             s,
                             data,
                             'l [m]',
                             's [m]',
                             extent=[l.min(),
                                     l.max(),
                                     s.min(),
                                     s.max()],
                             cmap=cmap)
    if cfgPath['compType'][0] == 'comModules':
        namePrint = 'refMod:' + cfgPath['compType'][
            1] + '_' + 'compMod:' + cfgPath['compType'][2]
        pU.putAvaNameOnPlot(ax2, namePrint)
    ax2.set_ylim([s[indStartOfRunout], yLim])
    ax2.set_title('Difference %s current - reference in runout area' %
                  resType + '\n' + 'Blue = FN, Red = FP')

    outFileName = '_'.join([
        projectName, 'thresholdValue',
        str(thresholdValue).replace('.', 'p'), 'sim',
        str(i), 'AreaComparisonToReference'
    ])
    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)

    ############################################
    # Figure: Raster comparison
    fig = plt.figure(figsize=(pU.figW * 3,
                              pU.figH * 2))  #, constrained_layout=True)
    ax1 = plt.subplot2grid((3, 3), (0, 0), rowspan=3)
    # get color map
    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       thresholdValue,
                                                       np.nanmax((refData)),
                                                       continuous=pU.contCmap)
    cmap.set_bad(color='w')
    refDataPlot = np.ma.masked_where(refData == 0.0, refData)
    ref0, im = pU.NonUnifIm(ax1,
                            l,
                            s,
                            refDataPlot,
                            'l [m]',
                            's [m]',
                            extent=[l.min(), l.max(), 0, yLim],
                            cmap=cmap,
                            norm=norm)
    ax1.axhline(y=s[indStartOfRunout],
                color='k',
                linestyle='--',
                label='start of run-out area point : %.1f °' %
                rasterTransfo['startOfRunoutAreaAngle'])
    ax1.set_title('Reference %s' % name)
    pU.addColorBar(im, ax1, ticks, unit)
    ax1.set_ylim([0, yLim])
    ax1.legend(loc='lower right')
    pU.putAvaNameOnPlot(ax1, projectName)

    compData = compData[indStartOfRunout:, :]
    refData = refData[indStartOfRunout:, :]
    dataDiff = compData - refData
    dataDiff = np.where((refData == 0) & (compData == 0), np.nan, dataDiff)
    dataDiffPlot = dataDiff[np.isnan(dataDiff) == False]
    # only plot hist and CDF if there is a difference in the data
    if dataDiffPlot.size:
        indDiff = dataDiffPlot > 0
        if indDiff.any():
            ax2 = plt.subplot2grid((3, 3), (0, 1), rowspan=2, colspan=2)
        else:
            ax2 = plt.subplot2grid((3, 3), (0, 1), rowspan=3, colspan=3)

    cmap = pU.cmapdiv
    cmap.set_bad(color='w')
    elev_max = inputs['diffLim']
    ref0, im3 = pU.NonUnifIm(
        ax2,
        l,
        s[indStartOfRunout:], (dataDiff),
        'l [m]',
        's [m]',
        extent=[l.min(), l.max(), s[indStartOfRunout:].min(), yLim],
        cmap=cmap)
    im3.set_clim(vmin=-elev_max, vmax=elev_max)
    L, S = np.meshgrid(l, s[indStartOfRunout:])
    colorsP = pU.cmapPres['colors'][1:5]
    contourRef = ax2.contour(L,
                             S,
                             refData,
                             levels=thresholdArray[:-1],
                             linewidths=1,
                             colors=colorsP)
    contourComp = ax2.contour(L,
                              S,
                              compData,
                              levels=thresholdArray[:-1],
                              linewidths=1,
                              colors=colorsP,
                              linestyles='dashed')

    labels = [str(level) + unit for level in thresholdArray[:-1]]
    for j in range(len(contourRef.collections)):
        contourRef.collections[j].set_label(labels[j])

    ax2.set_title('%s difference and contour lines' % name + '\n' +
                  'refMod = full, compMod = dashed line')

    if cfgPath['compType'][0] == 'comModules':
        namePrint = 'refMod:' + cfgPath['compType'][
            1] + '_' + 'compMod:' + cfgPath['compType'][2]
        pU.putAvaNameOnPlot(ax2, namePrint)
    ax2.set_ylim([s[indStartOfRunout], yLim])
    ax2.legend(loc='lower right')
    pU.addColorBar(im3, ax2, ticks, unit, title=name, extend='both')

    # only plot hist and CDF if there is a difference in the data
    if dataDiffPlot.size:
        indDiff = dataDiffPlot > 0
        if indDiff.any():
            ax3 = plt.subplot2grid((3, 3), (2, 1))
            ax4 = plt.subplot2grid((3, 3), (2, 2))
            # there is data to compare in the run out area
            centiles = sPlot.plotHistCDFDiff(
                dataDiffPlot,
                ax4,
                ax3,
                insert='False',
                title=[
                    '%s diff histogram' % name,
                    '%s diff CDF (95%% and 99%% centiles)' % name
                ])
        else:
            log.warning('No data in the run out area!')

    fig.subplots_adjust(hspace=0.3, wspace=0.3)
    outFileName = '_'.join([
        projectName, 'plim',
        str(thresholdValue).replace('.', 'p'), 'sim',
        str(i), 'ContourComparisonToReference'
    ])
    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)

    outFilePath = os.path.join(cfgPath['pathResult'], 'pics',
                               outFileName + '.png')

    return outFilePath
コード例 #2
0
ファイル: outAIMEC.py プロジェクト: avaframe/AvaFrame
def visuTransfo(rasterTransfo, inputData, cfgSetup, cfgPath, cfgFlags):
    """
    Plot and save the domain transformation figure
    """
    ####################################
    # Get input data
    resType = cfgSetup['resType']
    unit = pU.cfgPlotUtils['unit' + resType]
    # read paths
    projectName = cfgPath['projectName']
    # read rasterdata
    slRaster = inputData['slRaster']
    xyRaster = inputData['xyRaster']
    # read avaPath with scale
    xPath = rasterTransfo['x']
    yPath = rasterTransfo['y']
    # read domain boundarries with scale
    xllc = rasterTransfo['xllc']
    yllc = rasterTransfo['yllc']
    cellSize = rasterTransfo['cellSize']
    DBXl = rasterTransfo['DBXl'] * cellSize + xllc
    DBXr = rasterTransfo['DBXr'] * cellSize + xllc
    DBYl = rasterTransfo['DBYl'] * cellSize + yllc
    DBYr = rasterTransfo['DBYr'] * cellSize + yllc

    ############################################
    # prepare for plot
    n, m = np.shape(xyRaster)
    x = np.arange(m) * cellSize + xllc
    y = np.arange(n) * cellSize + yllc
    indStartOfRunout = rasterTransfo['indStartOfRunout']
    xx = rasterTransfo['x'][indStartOfRunout]
    yy = rasterTransfo['y'][indStartOfRunout]

    l = rasterTransfo['l']
    s = rasterTransfo['s']

    maskedArray = np.ma.masked_where(xyRaster == 0, xyRaster)
    maskedArraySL = np.ma.masked_where(slRaster == 0, slRaster)

    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       0.0,
                                                       np.nanmax(maskedArray),
                                                       continuous=pU.contCmap)
    cmap.set_under(color='w')

    ############################################
    # Figure: Raster transformation
    fig = plt.figure(figsize=(pU.figW * 2, pU.figH))

    ax1 = plt.subplot(121)

    ref0, im = pU.NonUnifIm(ax1,
                            x,
                            y,
                            maskedArray,
                            'x [m]',
                            'y [m]',
                            extent=[x.min(),
                                    x.max(),
                                    y.min(),
                                    y.max()],
                            cmap=cmap,
                            norm=norm)
    plt.plot(xx,
             yy,
             'k+',
             label='start of run-out area point : %.1f °' %
             rasterTransfo['startOfRunoutAreaAngle'])
    plt.plot(xPath, yPath, 'k--', label='flow path')
    plt.plot(DBXl, DBYl, 'k-', label='domain')
    plt.plot(DBXr, DBYr, 'k-')
    plt.plot([DBXl, DBXr], [DBYl, DBYr], 'k-')

    ax1.set_title('XY Domain')
    ax1.legend(loc=4)
    pU.putAvaNameOnPlot(ax1, cfgPath['projectName'])

    ax2 = plt.subplot(122)

    ref0, im = pU.NonUnifIm(ax2,
                            l,
                            s,
                            maskedArraySL,
                            'l [m]',
                            's [m]',
                            extent=[l.min(),
                                    l.max(),
                                    s.min(),
                                    s.max()],
                            cmap=cmap,
                            norm=norm)
    ax2.axhline(y=s[indStartOfRunout],
                color='k',
                linestyle='--',
                label='start of run-out area point : %.1f °' %
                rasterTransfo['startOfRunoutAreaAngle'])

    ax2.set_title('sl Domain' + '\n' + 'Black = out of raster')
    ax2.legend(loc=4)
    pU.addColorBar(im, ax2, ticks, unit)

    outFileName = '_'.join([projectName, 'DomainTransformation'])
    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)
コード例 #3
0
ファイル: outAIMEC.py プロジェクト: avaframe/AvaFrame
def visuSimple(rasterTransfo, resAnalysis, newRasters, cfgPath, cfgFlags):
    """
    Plot and save the Peak Pressure Peak Flow depth and Peak speed
    fields after coord transfo
    """
    ####################################
    # Get input data
    # read paths
    projectName = cfgPath['projectName']
    nRef = cfgPath['referenceFile']
    # read data
    plim = resAnalysis['thresholdValue']
    s = rasterTransfo['s']
    l = rasterTransfo['l']
    indStartOfRunout = rasterTransfo['indStartOfRunout']
    dataPressure = newRasters['newRasterPPR']
    rasterdataPres = dataPressure[nRef]
    dataDepth = newRasters['newRasterPFD']
    rasterdataDepth = dataDepth[nRef]
    dataSpeed = newRasters['newRasterPFV']
    rasterdataSpeed = dataSpeed[nRef]
    runout = resAnalysis['runout'][0]

    ############################################
    # prepare for plot
    Cmap = [pU.cmapPres, pU.cmapDepth, pU.cmapSpeed]
    Title = ['Peak Pressure', 'Peak Flow Depth', 'Peak Speed']
    Unit = [
        pU.cfgPlotUtils['unitppr'], pU.cfgPlotUtils['unitpfd'],
        pU.cfgPlotUtils['unitpfv']
    ]
    Data = np.array(([None] * 3))
    Data[0] = rasterdataPres
    Data[1] = rasterdataDepth
    Data[2] = rasterdataSpeed

    ############################################
    # Figure: Pressure depth speed

    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(pU.figW * 3, pU.figH))
    fig.subplots_adjust(left=0.05,
                        bottom=0.05,
                        right=0.95,
                        top=0.95,
                        hspace=0.3)

    for ax, cmap, data, title, unit in zip(axes.flatten(), Cmap, Data, Title,
                                           Unit):
        maskedArray = np.ma.masked_where(data == 0, data)
        cmap, _, _, norm, ticks = makePalette.makeColorMap(
            cmap, 0.0, np.nanmax(maskedArray), continuous=pU.contCmap)
        cmap.set_bad('w', 1.)
        ax.axhline(y=runout[0], color='k', linestyle='-', label='runout')

        ax.axhline(y=s[indStartOfRunout],
                   color='k',
                   linestyle='--',
                   label='Start or run-out point : %.1f °' %
                   resAnalysis['startOfRunoutAreaAngle'])
        ref3, im = pU.NonUnifIm(ax,
                                l,
                                s,
                                maskedArray,
                                'l [m]',
                                's [m]',
                                extent=[l.min(),
                                        l.max(),
                                        s.min(),
                                        s.max()],
                                cmap=cmap,
                                norm=norm)

        ax.set_title(title)
        ax.legend(loc=4)
        pU.addColorBar(im, ax, ticks, unit)
        pU.putAvaNameOnPlot(ax, cfgPath['projectName'])

    outFileName = '_'.join([
        projectName, 'plim',
        str((plim)).replace('.', 'p'), 'referenceFields'
    ])

    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)
コード例 #4
0
ファイル: outAIMEC.py プロジェクト: avaframe/AvaFrame
def visuRunoutStat(rasterTransfo, resAnalysis, newRasters, cfgSetup, cfgPath,
                   cfgFlags):
    """
    Plot and save the Peak field  distribution after coord transfo
    used when more then 2 simulations are compared
    """
    ####################################
    # Get input data
    resType = cfgSetup['resType']
    thresholdValue = cfgSetup['thresholdValue']
    unit = pU.cfgPlotUtils['unit' + resType]
    name = pU.cfgPlotUtils['name' + resType]
    # read paths
    projectName = cfgPath['projectName']
    nRef = cfgPath['referenceFile']
    # read data
    s = rasterTransfo['s']
    l = rasterTransfo['l']
    indStartOfRunout = rasterTransfo['indStartOfRunout']
    dataPressure = newRasters['newRaster' + resType.upper()]
    rasterdataPres = dataPressure[nRef]
    runout = resAnalysis['runout'][0]
    PPRCrossMax = resAnalysis[resType.upper() + 'CrossMax']

    ############################################
    # prepare for plot
    pMean = np.mean(PPRCrossMax, axis=0)
    pMedian = np.median(PPRCrossMax, axis=0)
    pPercentile = np.percentile(PPRCrossMax, [2.5, 50, 97.5], axis=0)

    maskedArray = np.ma.masked_where(rasterdataPres == 0, rasterdataPres)

    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       0.0,
                                                       np.nanmax(maskedArray),
                                                       continuous=pU.contCmap)
    cmap.set_bad('w', 1.)

    ############################################
    # Figure: Analysis runout
    fig = plt.figure(figsize=(pU.figW * 2, pU.figH))
    ax1 = plt.subplot(121)

    ax1.axhline(y=np.max(runout),
                color='k',
                linestyle='-.',
                label='runout max')
    ax1.axhline(y=np.average(runout),
                color='k',
                linestyle='-',
                label='runout mean')
    ax1.axhline(y=np.min(runout), color='k', linestyle=':', label='runout min')

    ax1.axhline(y=s[indStartOfRunout],
                color='k',
                linestyle='--',
                label='start of run-out area point : %.1f °' %
                resAnalysis['startOfRunoutAreaAngle'])
    ref5, im = pU.NonUnifIm(ax1,
                            l,
                            s,
                            maskedArray,
                            'l [m]',
                            's [m]',
                            extent=[l.min(),
                                    l.max(),
                                    s.min(),
                                    s.max()],
                            cmap=cmap,
                            norm=norm)

    ax1.set_title('Peak Pressure 2D plot for the reference')
    ax1.legend(loc=4)
    pU.putAvaNameOnPlot(ax1, projectName)

    pU.addColorBar(im, ax1, ticks, unit)

    ax2 = plt.subplot(122)

    ax2.fill_betweenx(s,
                      pPercentile[2],
                      pPercentile[0],
                      facecolor=[.8, .8, .8],
                      alpha=0.5,
                      label='quantiles')
    matplotlib.patches.Patch(alpha=0.5, color=[.8, .8, .8])
    ax2.plot(pMedian, s, color='r', label='median')
    ax2.plot(pMean, s, color='b', label='mean')

    ax2.set_title('%s distribution along the path between runs' % name)
    ax2.legend(loc=4)
    ax2.set_ylabel('s [m]')
    ax2.set_ylim([s.min(), s.max()])
    ax2.set_xlim(auto=True)
    ax2.set_xlabel('$P_{max}(s)$ [%s]' % unit)

    outFileName = '_'.join([
        projectName, resType, 'thresholdValue',
        str(thresholdValue).replace('.', 'p'), 'slComparisonStat'
    ])

    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)
コード例 #5
0
ファイル: outQuickPlot.py プロジェクト: avaframe/AvaFrame
def generateOnePlot(dataDict, outDir, cfg, plotDict):
    """ Create plots of ascii dataset

        Parameters
        ----------
        dataDict : dict
            dictionary with info on both datasets to be plotted
        avaName : str
            name of avalanche
        outDir : str
            path to dictionary where plots shall be saved to
        cfg : dict
            main configuration settings
        plotDict : dict
            dictionary with information about plots, for example release area

        Returns
        -------
        plotDict : dict
            updated plot dictionary with info about e.g. min, mean, max of difference between datasets
    """

    # Extract info for plotting
    data1 = dataDict['data1']
    name1 = dataDict['name1']
    cellSize = dataDict['cellSize']
    simName = 'Analyse'
    if plotDict['resType'] != '':
        unit = pU.cfgPlotUtils['unit%s' % plotDict['resType']]
        nameRes = pU.cfgPlotUtils['name%s' % plotDict['resType']]
    else:
        unit = ''
        nameRes = 'Result parameter'

    # Set dimensions of plots
    ny = data1.shape[0]
    nx = data1.shape[1]
    Ly = ny * cellSize
    Lx = nx * cellSize
    axis = plotDict['axis']

    # Location of Profiles
    location = float(plotDict['location'])
    if axis == 'x':
        nx_loc = int(location / cellSize)
    elif axis == 'y':
        ny_loc = int(location / cellSize)
    else:
        log.error('Not an axis, please provide axis of profile')

    # Plot data
    # Figure 1 shows the result parameter data
    fig = plt.figure(figsize=(pU.figW * 2, pU.figH))
    suptitle = fig.suptitle(name1, fontsize=14, color='0.5')
    ax1 = fig.add_subplot(121)
    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       np.nanmin(data1),
                                                       np.nanmax(data1),
                                                       continuous=pU.contCmap)

    im1 = plt.imshow(data1,
                     cmap=cmap,
                     extent=[0, Lx, 0, Ly],
                     origin='lower',
                     aspect=nx / ny,
                     norm=norm)
    pU.addColorBar(im1, ax1, ticks, unit)

    ax1.set_aspect('auto')
    title = str('%s' % name1)
    ax1.set_title(title)
    ax1.set_xlabel('x [m]')
    ax1.set_ylabel('y [m]')

    ax3 = fig.add_subplot(122)
    if axis == 'x':
        ax3.plot(data1[:, nx_loc], 'k', label='Reference')
    else:
        ax3.plot(data1[ny_loc, :], 'k', label='Reference')

    ax3.set_xlabel('Location across track [nrows]')
    ax3.set_ylabel('%s [%s]' % (nameRes, unit))
    if axis == 'x':
        ax3.set_title('Profile at x ~ %d [%s] (%d)' % (location, unit, nx_loc))
    else:
        ax3.set_title('Profile at y ~ %d [%s] (%d)' % (location, unit, ny_loc))

    fig.savefig(
        os.path.join(outDir, 'Profiles_%s.%s' % (name1, pU.outputFormat)))

    log.info('Figures saved to: %s' % outDir)

    if cfg['FLAGS'].getboolean('showPlot'):
        plt.show()

    plotDict['plots'].append(
        os.path.join(outDir, 'Profiles_%s.%s' % (name1, pU.outputFormat)))

    plt.close('all')

    return plotDict
コード例 #6
0
ファイル: outQuickPlot.py プロジェクト: avaframe/AvaFrame
def generatePlot(dataDict, avaName, outDir, cfg, plotDict):
    """ Create plots of two ascii datasets that shall be compared

        Parameters
        ----------
        dataDict : dict
            dictionary with info on both datasets to be plotted
        avaName : str
            name of avalanche
        outDir : str
            path to dictionary where plots shall be saved to
        cfg : dict
            main configuration settings
        plotDict : dict
            dictionary with information about plots, for example release area

        Returns
        -------
        plotDict : dict
            updated plot dictionary with info about e.g. min, mean, max of difference between datasets
    """

    # Extract info for plotting
    data1 = dataDict['data1']
    data2 = dataDict['data2']
    name1 = dataDict['name1']
    name2 = dataDict['name2']
    cellSize = dataDict['cellSize']
    if dataDict['compareType'] == 'compToRef':
        simName = dataDict['simName'] + '_' + dataDict['suffix']
        unit = dataDict['unit']
    else:
        simName = 'compare'
        unit = ''

    # Set dimensions of plots
    ny = data2.shape[0]
    nx = data2.shape[1]
    Ly = ny * cellSize
    Lx = nx * cellSize

    # Location of Profiles
    ny_loc = int(nx * 0.5)
    nx_loc = int(ny * 0.5)

    # Difference between datasets
    dataDiff = data1 - data2
    dataDiff = np.where((data1 == 0) & (data2 == 0), np.nan, dataDiff)
    diffMax = np.nanmax(dataDiff)
    diffMin = np.nanmin(dataDiff)
    diffMean = np.nanmean(dataDiff)

    # Location of box
    nybox = int(nx * 0.2)
    nxbox = int(ny * 0.2)

    minVal = min(np.nanmin(data1), np.nanmin(data2))
    maxVal = max(np.nanmax(data1), np.nanmax(data2))

    # Plot data
    # Figure 1 shows the result parameter data
    fig = plt.figure(figsize=(pU.figW * 3, pU.figH * 2))
    suptitle = fig.suptitle(avaName, fontsize=14, color='0.5')
    ax1 = fig.add_subplot(221)
    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       np.nanmin(data1),
                                                       np.nanmax(data1),
                                                       continuous=pU.contCmap)

    cmap.set_bad('w')
    data1P = ma.masked_where(data1 == 0.0, data1)
    im1 = plt.imshow(data1P,
                     cmap=cmap,
                     extent=[0, Lx, 0, Ly],
                     origin='lower',
                     aspect=nx / ny,
                     norm=norm,
                     vmin=minVal,
                     vmax=maxVal)
    pU.addColorBar(im1, ax1, ticks, unit)

    ax1.set_aspect('auto')
    title = str('%s' % name1)
    ax1.set_title(title)
    ax1.set_xlabel('x [m]')
    ax1.set_ylabel('y [m]')

    ax2 = fig.add_subplot(222)
    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       np.nanmin(data2),
                                                       np.nanmax(data2),
                                                       continuous=pU.contCmap)

    cmap.set_bad('w')
    data2P = ma.masked_where(data2 == 0.0, data2)
    im2 = plt.imshow(data2P,
                     cmap=cmap,
                     extent=[0, Lx, 0, Ly],
                     origin='lower',
                     aspect=nx / ny,
                     norm=norm,
                     vmin=minVal,
                     vmax=maxVal)
    pU.addColorBar(im2, ax2, ticks, unit)

    ax2.set_aspect('auto')
    ax2.set_xlabel('x [m]')
    title = str('%s' % name2)
    ax2.set_title(title)

    ax3 = fig.add_subplot(223)
    cmap = pU.cmapdiv
    elev_max = np.nanmax(np.abs(dataDiff))
    im3 = plt.imshow(dataDiff,
                     cmap=cmap,
                     clim=(-elev_max, elev_max),
                     extent=[0, Lx, 0, Ly],
                     origin='lower',
                     aspect=nx / ny)
    pU.addColorBar(im3, ax3, None, unit)
    ax3.text(nybox,
             nxbox,
             'Mean: %.2e %s\n Max: %.2e %s\n Min: %.2e %s' %
             (diffMean, unit, diffMax, unit, diffMin, unit),
             horizontalalignment='left',
             verticalalignment='bottom')
    ax3.set_aspect('auto')
    ax3.set_xlabel('x [m]')
    ax3.set_title('Difference ref-sim')

    # for difference histogramm - remove dataDiff == 0 values from array
    dataDiffPlot = dataDiff[np.isnan(dataDiff) == False]

    ax4 = fig.add_subplot(224)
    cmap = pU.cmapdiv

    if 'suffix' in dataDict:
        if dataDict['suffix'] == 'pfd':
            elev_max = 1
        elif dataDict['suffix'] == 'ppr':
            elev_max = 100
        elif dataDict['suffix'] == 'pfv':
            elev_max = 10
        ax4.set_title('Difference capped at max difference in %s: +-%d %s' %
                      (dataDict['suffix'], elev_max, unit))

    else:
        cutVal = 0.5
        elev_max = cutVal * elev_max
        ax4.set_title(
            'Difference capped at %.1f times max difference: +-%.2f' %
            (cutVal, elev_max))

    # for difference histogramm - remove dataDiff == 0 values from array
    dataDiffZoom = np.where(
        (dataDiffPlot < -elev_max) | (dataDiffPlot > elev_max), np.nan,
        dataDiffPlot)
    diffMaxZoom = np.nanmax(dataDiffZoom)
    diffMinZoom = np.nanmin(dataDiffZoom)
    diffMeanZoom = np.nanmean(dataDiffZoom)

    im4 = plt.imshow(dataDiff,
                     cmap=cmap,
                     clim=(-elev_max, elev_max),
                     extent=[0, Lx, 0, Ly],
                     origin='lower',
                     aspect=nx / ny)
    pU.addColorBar(im4, ax4, None, unit, extend='both')
    ax4.set_aspect('auto')
    ax4.set_xlabel('x [m]')

    # if difference is zero dont insert CDF plots
    indDiff = dataDiffPlot > 0
    if indDiff.any():
        axin3 = ax3.inset_axes([0.6, 0.1, 0.4, 0.25])
        axin3.patch.set_alpha(0.0)

        axin4 = ax4.inset_axes([0.6, 0.1, 0.4, 0.25])
        axin4.patch.set_alpha(0.0)

        centiles = sPlot.plotHistCDFDiff(dataDiffPlot, axin4, axin3)
        ax4.text(nybox,
                 nxbox,
                 '95%% centile: %.2e %s\n 99%% centile: %.2e %s' %
                 (centiles[0], unit, centiles[1], unit),
                 horizontalalignment='left',
                 verticalalignment='bottom')

    fig.savefig(
        os.path.join(outDir,
                     'Diff_%s_%s.%s' % (avaName, simName, pU.outputFormat)))

    # Fgiure 2 cross and lonprofile
    fig, ax = plt.subplots(ncols=2, figsize=(pU.figW * 2, pU.figH))
    suptitle = fig.suptitle(avaName, fontsize=14, color='0.5')
    ax[0].plot(data1[:, ny_loc], 'k', label='Reference')
    ax[0].plot(data2[:, ny_loc], 'b--', label='Simulation')
    ax[0].set_xlabel('Location across track [nrows]')
    ax[0].set_ylabel('Result parameter')
    ax[0].set_title('Cross profile at x =  %d' % ny_loc)
    ax[1].plot(data1[nx_loc, :], 'k', label='Reference')
    ax[1].plot(data2[nx_loc, :], 'b--', label='Simulation')
    ax[1].set_xlabel('Location along track [ncols]')
    ax[1].set_ylabel('Result parameter')
    ax[1].set_title('Long profile at y =  %d' % nx_loc)
    ax[0].legend()
    ax[1].legend()
    fig.savefig(
        os.path.join(outDir, 'Profiles_%s_%s.%s' %
                     (avaName, simName, pU.outputFormat)))

    log.info('Figures saved to: %s' % outDir)

    if cfg['FLAGS'].getboolean('showPlot'):
        plt.show()

    plotDict['plots'].append(
        os.path.join(outDir,
                     'Diff_%s_%s.%s' % (avaName, simName, pU.outputFormat)))
    plotDict['difference'].append(diffMax)
    plotDict['difference'].append(diffMean)
    plotDict['difference'].append(diffMin)
    plotDict['stats'].append(np.amax(data2))
    plotDict['stats'].append(np.amin(data2))
    if 'differenceZoom' in plotDict:
        plotDict['differenceZoom'].append(diffMaxZoom)
        plotDict['differenceZoom'].append(diffMeanZoom)
        plotDict['differenceZoom'].append(diffMinZoom)

    plt.close('all')

    return plotDict
コード例 #7
0
ファイル: outPlotAllPeak.py プロジェクト: avaframe/AvaFrame
def plotAllPeakFields(avaDir, cfg, cfgFLAGS, modName):
    """ Plot all peak fields and return dictionary with paths to plots

        Parameters
        ----------
        avaDir : str
            path to avalanche directoy
        cfg : dict
            configuration used to perform simulations
        cfgFLAGS : str
            general configuration, required to define if plots saved to reports directoy
        modName : str
            name of module that has been used to produce data to be plotted

        Returns
        -------
        plotDict : dict
            dictionary with info on plots, like path to plot
        """

    # Load all infos on simulations
    inputDir = os.path.join(avaDir, 'Outputs', modName, 'peakFiles')
    peakFiles = fU.makeSimDict(inputDir, '', avaDir)

    demFile = gI.getDEMPath(avaDir)
    demData = IOf.readRaster(demFile)
    demField = demData['rasterData']

    # Output directory
    if cfgFLAGS.getboolean('ReportDir'):
        outDir = os.path.join(avaDir, 'Outputs', modName, 'reports')
        fU.makeADir(outDir)
    else:
        outDir = os.path.join(avaDir, 'Outputs', 'out1Peak')
        fU.makeADir(outDir)

    # Initialise plot dictionary with simulation names
    plotDict = {}
    for sName in peakFiles['simName']:
        plotDict[sName] = {}

    # Loop through peakFiles and generate plot
    for m in range(len(peakFiles['names'])):

        # Load names and paths of peakFiles
        name = peakFiles['names'][m]
        fileName = peakFiles['files'][m]
        avaName = peakFiles['avaName'][m]
        log.debug('now plot %s:' % (fileName))

        # Load data
        raster = IOf.readRaster(fileName)
        data = raster['rasterData']

        # constrain data to where there is data
        cellSize = peakFiles['cellSize'][m]
        rowsMin, rowsMax, colsMin, colsMax = pU.constrainPlotsToData(
            data, cellSize)
        dataConstrained = data[rowsMin:rowsMax + 1, colsMin:colsMax + 1]
        demConstrained = demField[rowsMin:rowsMax + 1, colsMin:colsMax + 1]

        data = np.ma.masked_where(dataConstrained == 0.0, dataConstrained)
        unit = pU.cfgPlotUtils['unit%s' % peakFiles['resType'][m]]

        # Set extent of peak file
        ny = data.shape[0]
        nx = data.shape[1]
        Ly = ny * cellSize
        Lx = nx * cellSize

        # Figure  shows the result parameter data
        fig = plt.figure(figsize=(pU.figW, pU.figH))
        fig, ax = plt.subplots()
        # choose colormap
        cmap, _, _, norm, ticks = makePalette.makeColorMap(
            pU.cmapPres, np.amin(data), np.amax(data), continuous=pU.contCmap)
        cmap.set_bad(alpha=0)
        rowsMinPlot = rowsMin * cellSize
        rowsMaxPlot = (rowsMax + 1) * cellSize
        colsMinPlot = colsMin * cellSize
        colsMaxPlot = (colsMax + 1) * cellSize
        im0 = ax.imshow(
            demConstrained,
            cmap='Greys',
            extent=[colsMinPlot, colsMaxPlot, rowsMinPlot, rowsMaxPlot],
            origin='lower',
            aspect='equal')
        im1 = ax.imshow(
            data,
            cmap=cmap,
            extent=[colsMinPlot, colsMaxPlot, rowsMinPlot, rowsMaxPlot],
            origin='lower',
            aspect='equal')
        pU.addColorBar(im1, ax, ticks, unit)

        title = str('%s' % name)
        ax.set_title(title)
        ax.set_xlabel('x [m]')
        ax.set_ylabel('y [m]')

        plotName = os.path.join(outDir, '%s.%s' % (name, pU.outputFormat))

        pU.putAvaNameOnPlot(ax, avaDir)

        fig.savefig(plotName)
        if cfgFLAGS.getboolean('showPlot'):
            plt.show()
        plotPath = os.path.join(os.getcwd(), plotName)
        plotDict[peakFiles['simName'][m]].update(
            {peakFiles['resType'][m]: plotPath})
        plt.close('all')

    return plotDict
コード例 #8
0
ファイル: outPlotAllPeak.py プロジェクト: avaframe/AvaFrame
def plotAllFields(avaDir, inputDir, outDir, cfg):
    """ Plot all fields within given directory and save to outDir

        Parameters
        ----------
        avaDir : str
            path to avalanche directoy
        inputDir : str
            path to input directoy
        outDir : str
            path to directoy where plots shall be saved to
        cfg : dict
            configuration settings

        """

    # Load all infos on simulations
    peakFiles = glob.glob(inputDir + os.sep + '*.asc')

    # create out dir if not allready existing
    fU.makeADir(outDir)

    # Loop through peakFiles and generate plot
    for filename in peakFiles:

        # Load data
        raster = IOf.readRaster(filename)
        data = raster['rasterData']
        data = np.ma.masked_where(data == 0.0, data)
        name = os.path.splitext(os.path.basename(filename))[0]

        # get header info for file writing
        header = raster['header']
        cellSize = header.cellsize

        # Set extent of peak file
        ny = data.shape[0]
        nx = data.shape[1]
        Ly = ny * cellSize
        Lx = nx * cellSize
        unit = pU.cfgPlotUtils['unit%s' % cfg['GENERAL']['peakVar']]

        # Figure  shows the result parameter data
        fig = plt.figure(figsize=(pU.figW, pU.figH))
        fig, ax = plt.subplots()
        # choose colormap
        cmap, _, _, norm, ticks = makePalette.makeColorMap(
            pU.cmapPres, np.amin(data), np.amax(data), continuous=pU.contCmap)
        cmap.set_bad('w')
        im1 = ax.imshow(data,
                        cmap=cmap,
                        extent=[0, Lx, 0, Ly],
                        origin='lower',
                        aspect=nx / ny)
        pU.addColorBar(im1, ax, ticks, unit)

        title = str('%s' % name)
        ax.set_title(title)
        ax.set_xlabel('x [m]')
        ax.set_ylabel('y [m]')

        plotName = os.path.join(outDir, '%s.%s' % (name, pU.outputFormat))

        pU.putAvaNameOnPlot(ax, avaDir)

        fig.savefig(plotName)
        plt.close('all')