コード例 #1
0
ファイル: test_models.py プロジェクト: Mattdl/avalanche-1
    def test_resnet(self):
        model = resnet("cifar10", depth=20)

        # Test input/output sizes
        self.assertEqual(model.in_size, (32, 32))
        self.assertEqual(model.num_classes, 10)

        # Test input/output sizes
        model = resnet("imagenet", depth=12)
        self.assertEqual(model.in_size, (224, 224))
        self.assertEqual(model.num_classes, 1000)
コード例 #2
0
def main(args):

    # Model getter: specify dataset and depth of the network.
    model = pytorchcv_wrapper.resnet('cifar10', depth=20, pretrained=False)

    # Or get a more specific model. E.g. wide resnet, with depth 40 and growth
    # factor 8 for Cifar 10.
    # model = pytorchcv_wrapper.get_model("wrn40_8_cifar10", pretrained=False)

    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}"
                          if torch.cuda.is_available() and
                          args.cuda >= 0 else "cpu")

    device = "cpu"

    # --- TRANSFORMATIONS
    transform = transforms.Compose([
        ToTensor(),
        transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))
    ])

    # --- SCENARIO CREATION
    cifar_train = CIFAR10(root=expanduser("~") + "/.avalanche/data/cifar10/",
                          train=True, download=True, transform=transform)
    cifar_test = CIFAR10(root=expanduser("~") + "/.avalanche/data/cifar10/",
                         train=False, download=True, transform=transform)
    scenario = nc_benchmark(
        cifar_train, cifar_test, 5, task_labels=False, seed=1234,
        fixed_class_order=[i for i in range(10)])

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True, epoch=True, experience=True, stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=[interactive_logger])

    # CREATE THE STRATEGY INSTANCE (Naive, with Replay)
    cl_strategy = Naive(model, torch.optim.SGD(model.parameters(), lr=0.01),
                        CrossEntropyLoss(),
                        train_mb_size=100, train_epochs=1, eval_mb_size=100,
                        device=device,
                        plugins=[ReplayPlugin(mem_size=1000)],
                        evaluator=eval_plugin
                        )

    # TRAINING LOOP
    print('Starting experiment...')
    results = []
    for experience in scenario.train_stream:
        print("Start of experience ", experience.current_experience)
        cl_strategy.train(experience)
        print('Training completed')

        print('Computing accuracy on the whole test set')
        results.append(cl_strategy.eval(scenario.test_stream))