def advance_in_time(self): """ Update avulsion model one time step. """ ### future work: SLRR can be a vector to change rates ### # determine if there is an avulsion & find new path if so ### need to change this to look for shoreline after coupling ### ### (instead of looking for sea level) (self._riv_i, self._riv_j), self._avulsion_type, self._loc = avulse.find_avulsion( self._riv_i, self._riv_j, self._n, self._super_ratio, self._SL, self._ch_depth, self._short_path, self._splay_type, self._splay_dep, dx=self._dx, dy=self._dy) if self._saveavulsions & self._avulsion_type > 0: new_info = (self._avulsion_type, self._time / _SECONDS_PER_YEAR, self._loc) self._avulsion_info = np.vstack([self._avulsion_info, new_info]) #assert(self._riv_i[-1] != 0) # save timestep and avulsion location if there was one #if len(loc) != 0: # self._avulsions = self._avulsions + [(self._time/_SECONDS_PER_DAY), # loc[-1], avulsion_type, length_old, # length_new_sum, self._SL)] # raise first two rows by inlet rise rate (subsidence) self._n[:2, :] += self._IRR # change elevations according to sea level rise (SLRR) ### needs to be changed to subtracting elevation once coupled ### SLR.elev_change(self._SL, self._n, self._riv_i, self._riv_j, self._ch_depth) # smooth river course elevations using linear diffusion equation diffuse.smooth_rc(self._dx, self._dy, self._nu, self._dt, self._riv_i, self._riv_j, self._n) # Floodplain sedimentation FP.dep_blanket(self._SL, self._blanket_rate, self._n, self._riv_i, self._riv_j, self._ch_depth) # Wetland sedimentation ### no wetlands in first version of coupling to CEM ### FP.wetlands(self._SL, self._WL_Z, self._WL_dist * self._dy, self._n, self._riv_i, self._riv_j, self._x, self._y) # calculate sediment flux self._sed_flux = flux.calc_qs(self._nu, self._riv_i, self._riv_j, self._n, self._dx, self._dy, self._dt) self._profile = self._n[self._riv_i, self._riv_j] # Update sea level self._SL += self._SLRR self._time += self._dt
def advance_in_time(self): """ Update avulsion model one time step. """ # if (self._time / _SECONDS_PER_YEAR) > 2000: # self._SLRR = 0.01 / _SECONDS_PER_YEAR * self._dt self._riv_i, self._riv_j, self._course_update = steep_desc.update_course( self._n, self._riv_i, self._riv_j, self._ch_depth, self._slope, sea_level=self._SL, dx=self._dx, dy=self._dy) self._n = avulsion_utils.fix_elevations(self._n, self._riv_i, self._riv_j, self._ch_depth, self._SL, self._slope, self._dx, self._max_rand, self._SLRR) """ Save every time the course changes? """ if self._saveupdates and self._course_update > 0: with open('output_data/river_info.out','a') as file: file.write("%.5f %i \n" % ((self._time / _SECONDS_PER_YEAR), self._course_update)) """ determine if there is an avulsion & find new path if so """ (self._riv_i, self._riv_j), self._avulsion_type, self._loc, self._avulse_length, \ self._path_diff, self._splay_deposit = avulse.find_avulsion(self._riv_i, self._riv_j, self._n, self._super_ratio, self._SL, self._ch_depth, self._short_path, self._splay_type, self._slope, self._splay_deposit, self._nu, self._dt, dx=self._dx, dy=self._dy) """ Save avulsion record. """ if self._saveavulsions and self._avulsion_type > 0: with open('output_data/river_info.out','a') as file: file.write("%.5f %i %i %.5f %.5f\n" % ((self._time / _SECONDS_PER_YEAR), self._avulsion_type, self._loc, self._avulse_length, self._path_diff)) """ Save crevasse splay deposits. """ if self._saveavulsions and (self._splay_deposit.sum() > 0): np.savetxt('output_data/splay_deposit.out', self._splay_deposit, '%.8f') # need to fill old river channels if coupled to CEM if (self._avulsion_type == 1) or (self._avulsion_type == 2): self._n = avulsion_utils.fix_elevations(self._n, self._riv_i, self._riv_j, self._ch_depth, self._SL, self._slope, self._dx, self._max_rand, self._SLRR) #assert(self._riv_i[-1] != 0) """ change elevations according to sea level rise (SLRR) (if not coupled -- this occurs in coupling script otherwise) """ # SLR.elev_change(self._SL, self._n, self._riv_i, # self._riv_j, self._ch_depth, self._SLRR) """ smooth river course elevations using linear diffusion equation """ self._dn_rc = diffuse.smooth_rc(self._dx, self._dy, self._nu, self._dt, self._ch_depth, self._riv_i, self._riv_j, self._n, self._SL, self._slope) """ Floodplain sedimentation (use one or the other) """ #------------------------------------------------------- ### Deposit blanket across entire subaerial domain: ### # FP.dep_blanket(self._SL, self._blanket_rate, self._n, # self._riv_i, self._riv_j, self._ch_depth) ### Deposit fines adjacent to river channel: ### FP.dep_fines(self._n, self._riv_i, self._riv_j, self._dn_rc, self._frac_fines, self._SL) #------------------------------------------------------- """ Wetland sedimentation """ ### no wetlands in first version of coupling to CEM ### # FP.wetlands(self._SL, self._WL_Z, self._WL_dist * self._dy, # self._n, self._riv_i, self._riv_j, self._x, self._y) """ Subsidence """ subside.linear_subsidence(self._n, self._riv_i, self._riv_j, self._ch_depth, self._SubRate, self._SubStart, self._SL) """ calculate sediment flux at the river mouth """ self._sed_flux = flux.calc_qs(self._nu, self._riv_i, self._riv_j, self._n, self._SL, self._ch_depth, self._dx, self._dy, self._dt, self._slope) self._profile = self._n[self._riv_i, self._riv_j] # Update time self._time += self._dt # update sea level self._SL += self._SLRR
# begin time loop and main program for k in range(kmax): # determine sea level (or subsidence) SL = SL + [k * SLRR] current_SL = SL[-1] # # raise river inlet row by inlet rise rate (subsidence) # for j in range(jmax): # n[0][j] = n0 + (IRR) # determine if there is an avulsion & find new path if so riv_x, riv_y, loc, SEL, SER, n, dn_fp, avulsion_type, length_new_sum, \ length_old = avulse.find_avulsion(dx, dy, imax, jmax, riv_x, riv_y, n, super_ratio, current_SL, ch_depth, short_path, dn_fp, splay_type, splay_dep) # save timestep and avulsion location if there was one if len(loc) != 0: avulsions = avulsions + [(k*dt/86400, loc[-1], avulsion_type, length_old, length_new_sum, current_SL)] # raise first two rows by inlet rise rate (subsidence) n[0][:] = n[0][:] + (IRR) n[1][:] = n[1][:] + (IRR) # change elevations according to sea level rise (SLRR) n, rc_flag = SLR.elev_change(imax, jmax, current_SL, n, riv_x, riv_y, ch_depth, dx, dy)