import itertools from awave.utils.scheduling import run_serial DIR_FILE = os.path.dirname( os.path.realpath(__file__)) # directory of the config file if __name__ == '__main__': params_to_vary = { 'seed': [1], 'wave': ['db5'], 'J': [4], 'mode': ['zero'], 'init_factor': [1], 'noise_factor': [0], 'const_factor': [0], 'batch_size': [100], 'lr': [0.001], 'num_epochs': [50], 'attr_methods': ['Saliency'], 'lamL1wave': [0.005, 0.01, 0.02], 'lamL1attr': np.round([0] + list(np.geomspace(0.001, 0.05, 10)), 5), 'dirname': ['db5_saliency_warmstart_seed=1_new'], 'warm_start': [True] } ks = sorted(params_to_vary.keys()) vals = [params_to_vary[k] for k in ks] param_combinations = list(itertools.product(*vals)) # list of tuples # iterate run_serial(ks, param_combinations, path=opj(DIR_FILE, "ex_cosmology.py"))
opj = os.path.join import itertools from awave.utils.scheduling import run_serial DIR_FILE = os.path.dirname( os.path.realpath(__file__)) # directory of the config file if __name__ == '__main__': params_to_vary = { 'seed': [1], 'wave': ['db5'], 'J': [4], 'init_factor': [1], 'noise_factor': [0.3], 'const_factor': [0], 'batch_size': [100], 'lr': [0.001], 'num_epochs': [50], 'attr_methods': ['Saliency'], 'lamL1wave': np.round(list(np.geomspace(0.00001, 0.0001, 5)), 5), 'lamL1attr': np.round([0] + list(np.geomspace(0.00001, 50, 20)), 5), 'dirname': ['db5_saliency_warmstart_seed=1'], 'warm_start': [True] } ks = sorted(params_to_vary.keys()) vals = [params_to_vary[k] for k in ks] param_combinations = list(itertools.product(*vals)) # list of tuples # iterate run_serial(ks, param_combinations, path=opj(DIR_FILE, "ex_simulation.py"))
DIR_FILE = os.path.dirname( os.path.realpath(__file__)) # directory of the config file if __name__ == '__main__': params_to_vary = { 'seed': [1], 'wave': ['db3'], 'J': [3], 'mode': ['periodization'], 'init_factor': [1], 'noise_factor': [0], 'const_factor': [0], 'batch_size': [100], 'lr': [0.001], 'num_epochs': [50], 'attr_methods': ['Saliency'], 'lamL1wave': [0.05], 'lamL1attr': np.round([0] + list(np.geomspace(0.01, 5, 20)), 5), 'target': [-1], 'model': ['cnn'], 'dirname': ['db3_saliency_warmstart_mode=per_cnn_seed=1'], 'warm_start': [True] } ks = sorted(params_to_vary.keys()) vals = [params_to_vary[k] for k in ks] param_combinations = list(itertools.product(*vals)) # list of tuples # iterate run_serial(ks, param_combinations, path=opj(DIR_FILE, "ex_mnist.py"))