コード例 #1
0
def tan(x):
    """
        Helper function that calculates the sin of a variable or number.

        INPUTS:
            x : awesomediff.variable object or a number.

        OUTPUT:
            awesomediff.variable
    """

    try:
        # Assume object is a variable:
        val = x.val
        der = x.der
    except:
        # If not, treat it as a constant.
        try:
            float(x)
        except:
            raise ValueError("{} is not a number.".format(x))
        val = x
        der = 0  # Derivative of a constant is zero.
    # Calculate new value an derivative:
    new_val = np.tan(val)
    new_der = ((1 / np.cos(val))**2) * der
    # Return variable with new value an derivative:
    return variable(val=new_val, der=new_der)
コード例 #2
0
def arcsin(x):
    """
        Helper function that calculates the arcsine of a variable or number.

        INPUTS:
            x : awesomediff.variable object or a number.

        OUTPUT:
            awesomediff.variable
    """
    try:
        # Assume object is a variable:
        val = x.val
        der = x.der
    except:
        # If not, treat it as a constant.
        try:
            float(x)
        except:
            raise ValueError("{} is not a number.".format(x))
        val = x
        der = 0  # Derivative of a constant is zero.
    # Calculate new value an derivative:
    new_val = np.arcsin(val)
    if (np.isnan(new_val)):
        raise ValueError("Please enter a number on the unit circle.")

    # if (np.sqrt(1-val**2)==0):
    #     new_der = 0
    # else:
    #     new_der = 1/np.sqrt(1-val**2)*der
    # print("new val", new_val)
    new_der = 1 / np.sqrt(1 - val**2) * der
    # Return variable with new value an derivative:
    return variable(val=new_val, der=new_der)
コード例 #3
0
def exp(x):
    """
        Helper function that calculates the exponential of a variable or number.

        INPUTS:
            x : AutoDiff.variable object or a number.

        OUTPUT:
            AutoDiff.variable
    """
    try:
        new_val = np.exp(x.val)
        new_der = np.exp(x.val) * x.der
        return variable(val=new_val, der=new_der)
    except:
        new_val = np.exp(x)
        new_der = 0
        return variable(val=new_val, der=new_der)
コード例 #4
0
def sqrt(x):
    """
        Helper function that calculates the square root of a variable or number.

        INPUTS:
            x : AutoDiff.variable object or a number.

        OUTPUT:
            AutoDiff.variable
    """
    try:
        new_val = np.sqrt(x.val)
        new_der = (0.5 / np.sqrt(x.val)) * x.der
        return variable(val=new_val, der=new_der)
    except:
        new_val = np.sqrt(x)
        new_der = 0
        return variable(val=new_val, der=new_der)
コード例 #5
0
def logb(x, b):
    """
        Helper function that calculates the log of a variable or number with any base.

        INPUTS:
            x : AutoDiff.variable object or a number.
            b: a number

        OUTPUT:
            AutoDiff.variable
    """
    try:
        new_val = np.log(x.val) / np.log(b)
        new_der = (1 / (np.log(b) * x.val)) * x.der
        return variable(val=new_val, der=new_der)
    except:
        new_val = np.log(x) / np.log(b)
        new_der = 0
        return variable(val=new_val, der=new_der)
コード例 #6
0
def logistic(x, L=1, k=1, x0=1):
    """
        Helper function that calculates the logistic of a variable or number.

        INPUTS:
            x : AutoDiff.variable object or a number.

        OUTPUT:
            AutoDiff.variable
    """
    try:
        val = x.val
        der = x.der
        logistic = L / (1 + np.exp(-k * (val - x0)))
        new_val = logistic
        new_der = logistic * (1 - logistic) * der
        return variable(val=new_val, der=new_der)
    except:
        new_val = L / (1 + np.exp(-k * (x - x0)))
        new_der = 0
        return variable(val=new_val, der=new_der)
コード例 #7
0
def log(x):
    """
        Helper function that calculates the natural log of a variable or number.

        INPUTS:
            x : AutoDiff.variable object or a number.

        OUTPUT:
            AutoDiff.variable
    """
    try:
        # x.val = np.log(x.val)
        # x.der = (1/x.val)*x.der
        new_val = np.log(x.val)
        new_der = (1 / x.val) * x.der
        # return x
        return variable(val=new_val, der=new_der)
    except:
        new_val = np.log(x)
        new_der = 0
        return variable(val=new_val, der=new_der)