コード例 #1
0
 def __init__(self, output, ev, weight, selection=None):
     '''
     output: the accumulator object
     ev: NanoEvent
     weight: coffea analysis_tools Weights object
     '''
     self.ev = ev
     self.weight = weight.weight()
     self.output = output
     self.selection = None
     self.addRow('entry', (ak.ones_like(self.weight) == 1))
コード例 #2
0
def mask_or(ev, collection, masks):
    """Returns the OR of the masks in the list
    :param ev: NanoEvents
    :type ev: NanoEvents
    :param collection: HLT or Filter
    "type collection: string
    :param masks: Mask names as saved in the df
    :type masks: List
    :return: OR of all masks for each event
    :rtype: array
    """
    # Start with array of False
    decision = (ak.ones_like(ev.MET.pt) == 0)

    coll = getattr(ev, collection)

    # Flip to true if any is passed
    for t in masks:
        try:
            decision = decision | getattr(coll, t)
        except KeyError:
            continue
    return decision
コード例 #3
0
ファイル: helpers.py プロジェクト: cjmcmahon1/tW_scattering
def build_weight_like(weight, selection, like):
    return ak.flatten(weight[selection] * ak.ones_like(like[selection]))
コード例 #4
0
    def __init__(self, ev, obj, wp, year=2018, verbose=0):
        self.obj = obj
        self.wp = wp
        if self.wp == None:
            self.selection_dict = {}
        else:
            self.selection_dict = obj_def[self.obj][self.wp]

        self.v = verbose
        self.year = year

        id_level = None
        if wp.lower().count('veto'):
            id_level = 0
        elif wp.lower().count('fake'):
            id_level = 1
        elif wp.lower().count('tight'):
            id_level = 2

        if self.obj == "Muon":
            # collections are already there, so we just need to calculate missing ones
            ev['Muon', 'absMiniIso'] = ev.Muon.miniPFRelIso_all * ev.Muon.pt
            ev['Muon', 'ptErrRel'] = ev.Muon.ptErr / ev.Muon.pt

            # this is what we are using:
            # - jetRelIso if the matched jet is within deltaR<0.4, pfRelIso03_all otherwise
            # - btagDeepFlavB discriminator of the matched jet if jet is within deltaR<0.4, 0 otherwise
            # - pt_cone = 0.9*pt of matched jet if jet is within deltaR<0.4, pt/(pt+iso) otherwise

            mask_close = (ak.fill_none(ev.Muon.delta_r(ev.Muon.matched_jet),
                                       99) < 0.4) * 1
            mask_far = ~(ak.fill_none(ev.Muon.delta_r(ev.Muon.matched_jet), 99)
                         < 0.4) * 1

            deepJet = ak.fill_none(ev.Muon.matched_jet.btagDeepFlavB,
                                   0) * mask_close + 0 * mask_far
            jetRelIsoV2 = ev.Muon.jetRelIso * mask_close + ev.Muon.pfRelIso03_all * mask_far  # default to 0 if no match
            conePt = 0.9 * ak.fill_none(
                ev.Muon.matched_jet.pt,
                0) * mask_close + (ev.Muon.pt *
                                   (1 + ev.Muon.miniPFRelIso_all)) * mask_far
            #conePt = 0.8 * ak.fill_none(ev.Muon.matched_jet.pt,0) * mask_close + (ev.Muon.pt/(1 + ev.Muon.miniPFRelIso_all))*mask_far

            ev['Muon', 'deepJet'] = ak.copy(deepJet)
            ev['Muon', 'jetRelIsoV2'] = jetRelIsoV2
            ev['Muon', 'conePt'] = conePt
            ev['Muon', 'id'] = ak.ones_like(conePt) * id_level

            self.cand = ev.Muon

        elif self.obj == "Electron":
            # calculate new variables. asignment is awkward, but what can you do.
            ev['Electron',
               'absMiniIso'] = ev.Electron.miniPFRelIso_all * ev.Electron.pt
            ev['Electron', 'etaSC'] = ev.Electron.eta + ev.Electron.deltaEtaSC

            # the following line is only needed if we do our own matching.
            # right now, we keep using the NanoAOD match, but check the deltaR distance
            # jet_index, mask_match, mask_nomatch = self.matchJets(ev.Electron, ev.Jet)

            # this is what we are using:
            # - jetRelIso if the matched jet is within deltaR<0.4, pfRelIso03_all otherwise
            # - btagDeepFlavB discriminator of the matched jet if jet is within deltaR<0.4, 0 otherwise
            # - pt_cone = 0.9*pt of matched jet if jet is within deltaR<0.4, pt/(pt+iso) otherwise

            mask_close = (ak.fill_none(
                ev.Electron.delta_r(ev.Electron.matched_jet), 99) < 0.4) * 1
            mask_far = ~(ak.fill_none(
                ev.Electron.delta_r(ev.Electron.matched_jet), 99) < 0.4) * 1

            deepJet = ak.fill_none(ev.Electron.matched_jet.btagDeepFlavB,
                                   0) * mask_close
            jetRelIsoV2 = ev.Electron.jetRelIso * mask_close + ev.Electron.pfRelIso03_all * mask_far  # default to 0 if no match
            conePt = 0.9 * ak.fill_none(
                ev.Electron.matched_jet.pt, 0) * mask_close + (
                    ev.Electron.pt *
                    (1 + ev.Electron.miniPFRelIso_all)) * mask_far
            #conePt = 0.8 * ak.fill_none(ev.Electron.matched_jet.pt,0) * mask_close + (ev.Electron.pt/(1 + ev.Electron.miniPFRelIso_all))*mask_far

            ev['Electron', 'deepJet'] = ak.copy(deepJet)
            ev['Electron', 'jetRelIsoV2'] = jetRelIsoV2
            ev['Electron', 'conePt'] = conePt
            ev['Electron', 'id'] = ak.ones_like(conePt) * id_level

            self.cand = ev.Electron

        self.getSelection()

        if self.obj == "Electron" and self.wp == "tight":
            self.selection = self.selection & self.getElectronMVAID(
            ) & self.getIsolation(0.07, 0.78, 8.0) & self.isTriggerSafeNoIso()
            if self.v > 0: print(" - custom ID and multi-isolation")

        if self.obj == "Muon" and self.wp == "tight":
            self.selection = self.selection & self.getIsolation(
                0.11, 0.74, 6.8)
            if self.v > 0: print(" - custom multi-isolation")
            #self.selection = self.selection & ak.fill_none(ev.Muon.matched_jet.btagDeepFlavB<0.2770, True)
            #self.selection = self.selection & (ev.Muon.matched_jet.btagDeepFlavB<0.2770)
            #if self.v>0: print (" - deepJet")

        if self.obj == "Electron" and (self.wp == "tightTTH"
                                       or self.wp == 'fakeableTTH'
                                       or self.wp == "tightSSTTH"
                                       or self.wp == 'fakeableSSTTH'):
            self.selection = self.selection & self.getSigmaIEtaIEta()
            if self.v > 0: print(" - SigmaIEtaIEta")
            #self.selection = self.selection & ak.fill_none(ev.Electron.matched_jet.btagDeepFlavB<0.2770, True)
            #self.selection = self.selection & (ev.Electron.matched_jet.btagDeepFlavB<0.2770)
            #self.selection = self.selection & (ev.Jet[ev.Electron.jetIdx].btagDeepFlavB<0.2770)
            #if self.v>0: print (" - deepJet")

        if self.obj == 'Muon' and (self.wp == 'fakeableTTH'
                                   or self.wp == 'fakeableSSTTH'):
            #self.selection = self.selection & (self.cand.deepJet < self.getThreshold(self.cand.conePt, min_pt=20, max_pt=45, low=0.2770, high=0.0494))
            self.selection = self.selection & (ak.fill_none(
                ev.Muon.matched_jet.btagDeepFlavB, 0) < self.getThreshold(
                    self.cand.conePt, min_pt=20, max_pt=45))
            if self.v > 0: print(" - interpolated deepJet")
コード例 #5
0
    def process(self, events):

        output = self.accumulator.identity()

        # we can use a very loose preselection to filter the events. nothing is done with this presel, though
        presel = ak.num(events.Jet) > 0

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        output['totalEvents']['all'] += len(events)
        output['skimmedEvents']['all'] += len(ev)

        ## Muons
        muon = ev.Muon

        ## Electrons
        electron = Collections(ev, "Electron", "tight").get()
        #electron = electron[(ak.nan_to_num(electron.eta, 99))]
        electron = electron[(electron.miniPFRelIso_all < 0.12)
                            & (electron.pt > 20) & (abs(electron.eta) < 2.4)]

        gen_matched_electron = electron[((electron.genPartIdx >= 0) & (abs(
            electron.matched_gen.pdgId) == 11))]

        is_flipped = ((gen_matched_electron.matched_gen.pdgId *
                       (-1) == gen_matched_electron.pdgId) &
                      (abs(gen_matched_electron.pdgId) == 11))
        #(abs(ev.GenPart[gen_matched_electron.genPartIdx].pdgId) ==abs(gen_matched_electron.pdgId))&(ev.GenPart[gen_matched_electron.genPartIdx].pdgId/abs(ev.GenPart[gen_matched_electron.genPartIdx].pdgId) != gen_matched_electron.pdgId/abs(gen_matched_electron.pdgId))

        flipped_electron = gen_matched_electron[is_flipped]
        flipped_electron = flipped_electron[(ak.fill_none(
            flipped_electron.pt, 0) > 0)]
        n_flips = ak.num(flipped_electron)

        dielectron = choose(electron, 2)
        SSelectron = ak.any(
            (dielectron['0'].charge * dielectron['1'].charge) > 0, axis=1)

        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[leading_electron_idx]

        leading_flipped_electron_idx = ak.singletons(
            ak.argmax(flipped_electron.pt, axis=1))
        leading_flipped_electron = electron[leading_flipped_electron_idx]

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        # setting up the various weights
        weight = Weights(len(ev))

        if not dataset == 'MuonEG':
            # generator weight
            weight.add("weight", ev.genWeight)

        #selections
        filters = getFilters(ev, year=self.year, dataset=dataset)
        electr = ((ak.num(electron) >= 1))
        gen_electr = ((ak.num(gen_matched_electron) >= 1))
        ss = (SSelectron)
        flip = (n_flips >= 1)

        selection = PackedSelection()
        selection.add('filter', (filters))
        selection.add('electr', electr)
        selection.add('ss', ss)
        selection.add('flip', flip)
        selection.add('gen_electr', gen_electr)

        bl_reqs = ['filter', 'electr', 'gen_electr']

        bl_reqs_d = {sel: True for sel in bl_reqs}
        baseline = selection.require(**bl_reqs_d)

        f_reqs = bl_reqs + ['flip']
        f_reqs_d = {sel: True for sel in f_reqs}
        flip_sel = selection.require(**f_reqs_d)

        #adjust weights to prevent length mismatch
        ak_weight_gen = ak.ones_like(
            gen_matched_electron[baseline].pt) * weight.weight()[baseline]
        ak_weight_flip = ak.ones_like(
            flipped_electron[flip_sel].pt) * weight.weight()[flip_sel]

        output['N_ele'].fill(dataset=dataset,
                             multiplicity=ak.num(electron)[baseline],
                             weight=weight.weight()[baseline])
        output['electron_flips'].fill(dataset=dataset,
                                      multiplicity=n_flips[baseline],
                                      weight=weight.weight()[baseline])

        output["electron"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(gen_matched_electron[baseline].pt)),
            eta=abs(ak.to_numpy(ak.flatten(
                gen_matched_electron[baseline].eta))),
            #phi = ak.to_numpy(ak.flatten(leading_electron[baseline].phi)),
            #weight = ak.to_numpy(ak.flatten(ak_weight_gen))
        )

        output["electron2"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(gen_matched_electron[baseline].pt)),
            eta=ak.to_numpy(ak.flatten(gen_matched_electron[baseline].eta)),
            #phi = ak.to_numpy(ak.flatten(leading_electron[baseline].phi)),
            #weight = ak.to_numpy(ak.flatten(ak_weight_gen))
        )

        output["flipped_electron"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(flipped_electron[flip_sel].pt)),
            eta=abs(ak.to_numpy(ak.flatten(flipped_electron[flip_sel].eta))),
            #phi = ak.to_numpy(ak.flatten(flipped_electron[flip_sel].phi)),
            #weight = ak.to_numpy(ak.flatten(ak_weight_flip))
        )

        output["flipped_electron2"].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(flipped_electron[flip_sel].pt)),
            eta=ak.to_numpy(ak.flatten(flipped_electron[flip_sel].eta)),
            #phi = ak.to_numpy(ak.flatten(flipped_electron[flip_sel].phi)),
            #weight = ak.to_numpy(ak.flatten(ak_weight_flip))
        )

        return output
コード例 #6
0
def test():
    array = awkward1.Array([[{
        "x": 0.0,
        "y": []
    }, {
        "x": 1.1,
        "y": [1]
    }, {
        "x": 2.2,
        "y": [1, 2]
    }], [],
                            [{
                                "x": 3.3,
                                "y": [1, 2, None, 3]
                            }, False, False, True, {
                                "x": 4.4,
                                "y": [1, 2, None, 3, 4]
                            }]])

    assert awkward1.full_like(array,
                              12.3).tolist() == [[{
                                  "x": 12.3,
                                  "y": []
                              }, {
                                  "x": 12.3,
                                  "y": [12]
                              }, {
                                  "x": 12.3,
                                  "y": [12, 12]
                              }], [],
                                                 [{
                                                     "x": 12.3,
                                                     "y": [12, 12, None, 12]
                                                 }, True, True, True, {
                                                     "x": 12.3,
                                                     "y":
                                                     [12, 12, None, 12, 12]
                                                 }]]

    assert awkward1.zeros_like(array).tolist() == [[{
        "x": 0.0,
        "y": []
    }, {
        "x": 0.0,
        "y": [0]
    }, {
        "x": 0.0,
        "y": [0, 0]
    }], [],
                                                   [{
                                                       "x": 0.0,
                                                       "y": [0, 0, None, 0]
                                                   }, False, False, False, {
                                                       "x": 0.0,
                                                       "y": [0, 0, None, 0, 0]
                                                   }]]

    assert awkward1.ones_like(array).tolist() == [[{
        "x": 1.0,
        "y": []
    }, {
        "x": 1.0,
        "y": [1]
    }, {
        "x": 1.0,
        "y": [1, 1]
    }], [],
                                                  [{
                                                      "x": 1.0,
                                                      "y": [1, 1, None, 1]
                                                  }, True, True, True, {
                                                      "x": 1.0,
                                                      "y": [1, 1, None, 1, 1]
                                                  }]]

    array = awkward1.Array([["one", "two", "three"], [], ["four", "five"]])
    assert awkward1.full_like(
        array, "hello").tolist() == [["hello", "hello", "hello"], [],
                                     ["hello", "hello"]]
    assert awkward1.full_like(array, 1).tolist() == [["1", "1", "1"], [],
                                                     ["1", "1"]]
    assert awkward1.full_like(array, 0).tolist() == [["0", "0", "0"], [],
                                                     ["0", "0"]]
    assert awkward1.ones_like(array).tolist() == [["1", "1", "1"], [],
                                                  ["1", "1"]]
    assert awkward1.zeros_like(array).tolist() == [["", "", ""], [], ["", ""]]

    array = awkward1.Array([[b"one", b"two", b"three"], [], [b"four",
                                                             b"five"]])
    assert awkward1.full_like(
        array, b"hello").tolist() == [[b"hello", b"hello", b"hello"], [],
                                      [b"hello", b"hello"]]
    assert awkward1.full_like(array, 1).tolist() == [[b"1", b"1", b"1"], [],
                                                     [b"1", b"1"]]
    assert awkward1.full_like(array, 0).tolist() == [[b"0", b"0", b"0"], [],
                                                     [b"0", b"0"]]
    assert awkward1.ones_like(array).tolist() == [[b"1", b"1", b"1"], [],
                                                  [b"1", b"1"]]
    assert awkward1.zeros_like(array).tolist() == [[b"", b"", b""], [],
                                                   [b"", b""]]