コード例 #1
0
ファイル: writer.py プロジェクト: awracms/awra_cms_old
 def run_setup(self):
     # import os
     # self.pid = os.getpid()
     # print("writer pid: %d"%self.pid,flush=True)
     #logger.info("writer pid: %d",self.pid)
     self.rebuild_buffers()
     self.exe_graph = graph.OutputGraph(self.mapping)
コード例 #2
0
def build_output_graph():
    from awrams.utils.nodegraph import nodes,graph

    from awrams.models import awral
    from awrams.models.awral import ffi_wrapper as fw
    from awrams.models.awral.template import DEFAULT_TEMPLATE

    output_map = awral.get_output_nodes(DEFAULT_TEMPLATE)
    print(output_map)

    outpath = '/data/cwd_awra_data/awra_test_outputs/sbaronha/sim_test_outputs/'
    output_map.mapping.update({
        's0_avg': nodes.transform(nodes.average,['s0_dr','s0_sr']),
        's0_avg_save': nodes.write_to_annual_ncfile(outpath,'s0_avg'),

        'ss_avg': nodes.transform(nodes.average,['ss_dr','ss_sr']),
        'ss_avg_save': nodes.write_to_annual_ncfile(outpath,'ss_avg'),

        # 'sd_avg': nodes.transform(nodes.average,['s0_dr','s0_sr']),
        # 'sd_avg_save': nodes.write_to_annual_ncfile('./','s0_avg'),
        #
        # 'qtot_avg_save': nodes.write_to_annual_ncfile('./','qtot'),
        # 'etot_avg_save': nodes.write_to_annual_ncfile('./','etot')
        })
    outputs = graph.OutputGraph(output_map.mapping)
    # print(outputs.get_dataspecs())
    # print(outputs.get_dataspecs(flat=True))
    return outputs
コード例 #3
0
def setup():
    from os.path import join, dirname

    from awrams.utils import datetools as dt

    from awrams.utils.nodegraph import nodes, graph
    from awrams.models import awral
    from awrams.models.awral.template import DEFAULT_TEMPLATE
    from awrams.utils.mapping_types import period_to_tc

    global period
    period = dt.dates('dec 2010 - jan 2011')

    global input_map
    input_map = awral.get_default_mapping()
    change_path_to_forcing(input_map)

    global output_map
    output_map = awral.get_output_nodes(DEFAULT_TEMPLATE)

    global outpath
    outpath = join(dirname(__file__), '..', '..', 'test_data', 'simulation',
                   'outputs')

    output_map.mapping['s0_ncsave'] = nodes.write_to_annual_ncfile(
        outpath, 's0')
    outgraph = graph.OutputGraph(output_map.mapping)
コード例 #4
0
ファイル: ondemand.py プロジェクト: nemochina2008/awra_cms
    def __init__(self,model,imapping,omapping=None):
        self.input_runner = graph.ExecutionGraph(imapping)
        self.model_runner = model.get_runner(self.input_runner.get_dataspecs(True))

        self.outputs = None
        if omapping is not None:
            output_vars = []
            for v in self.model_runner.template['OUTPUTS_AVG'] + self.model_runner.template['OUTPUTS_CELL']:
                output_vars.append(v)
            for v in self.model_runner.template['OUTPUTS_HRU']:
                output_vars.extend([v+'_sr',v+'_dr'])
            for v in output_vars:
                omapping[v] = nodes.model_output(v)
            self.outputs = graph.OutputGraph(omapping)
コード例 #5
0
ファイル: ondemand.py プロジェクト: awracms/awra_cms_old
    def __init__(self, model, imapping, omapping=None, extent=None):

        if extent is None:
            extent = extents.get_default_extent()

        imapping = graph.get_input_tree(model.get_input_keys(), imapping)
        #+++
        #Document the use of this manually, don't just change the graph behind the scenes...
        #imapping = graph.map_rescaling_nodes(imapping,extent)

        self.input_runner = graph.ExecutionGraph(imapping)
        self.model_runner = model.get_runner(
            self.input_runner.get_dataspecs(True))

        self.outputs = None
        if omapping is not None:
            self.outputs = graph.OutputGraph(omapping)
コード例 #6
0
def build_output_graph():
    from awrams.utils.nodegraph import nodes, graph

    from awrams.models import awral
    from awrams.models.awral import ffi_wrapper as fw
    from awrams.models.awral.template import DEFAULT_TEMPLATE

    output_map = awral.get_output_nodes(DEFAULT_TEMPLATE)
    print(output_map)

    output_map.mapping.update({
        's0_avg':
        nodes.transform(nodes.average, ['s0_dr', 's0_sr']),
        's0_avg_save':
        nodes.write_to_annual_ncfile('./', 's0_avg')
    })
    outputs = graph.OutputGraph(output_map.mapping)
    print(outputs.get_dataspecs())
    print(outputs.get_dataspecs(flat=True))
    return outputs
コード例 #7
0
    def run(self,input_map,output_map,period,extent): #periods,chunks):
        '''
        Should be the basis for new-style sim server
        Currently no file output, but runs inputgraph/model quite happily...
        '''
        import time
        start = time.time()

        chunks = extents.subdivide_extent(extent,self.spatial_chunk)
        periods = dt.split_period(period,'a')

        self.logger.info("Getting I/O dataspecs...")
        #+++ Document rescaling separately, don't just change the graph behind the scenes...
        #mapping = graph.map_rescaling_nodes(input_map.mapping,extent)
        mapping = input_map
        filtered = graph.get_input_tree(self.model.get_input_keys(),mapping)

        input_nodes = {}
        worker_nodes = {}
        output_nodes = {}

        for k,v in filtered.items():
            if 'io' in v.properties:
                input_nodes[k] = v
                worker_nodes[k] = nodes.const(None)
            else:
                worker_nodes[k] = v

        for k,v in output_map.items():
            try:
                if v.properties['io'] == 'from_model':
                    output_nodes[k] = v
            except: # AttributeError:
                pass
                # print("EXCEPTION",k,v)

        igraph = graph.ExecutionGraph(input_nodes)

        self._set_max_dims(igraph)

        input_dspecs = igraph.get_dataspecs(True)

        #+++ No guarantee this will close files. Put in separate function?
        del igraph

        model_dspecs = graph.ExecutionGraph(mapping).get_dataspecs(True)
        output_dspecs = graph.OutputGraph(output_nodes).get_dataspecs(True)

        self.model.init_shared(model_dspecs)
        ### initialise output ncfiles
        self.logger.info("Initialising output files...")
        outgraph = graph.OutputGraph(output_map)
        outgraph.initialise(period,extent)

        #+++ Can we guarantee that statespecs will be 64bit for recycling?

        # NWORKERS = 2
        # READ_AHEAD = 1

        sspec = DataSpec('array',['cell'],np.float64)

        state_specs = {}
        for k in self.model.get_state_keys():
            init_k = 'init_' + k

            input_dspecs[init_k] = sspec
            state_specs[k] = sspec

        self.logger.info("Building buffers...")
        input_bufs = create_managed_buffergroups(input_dspecs,self.max_dims,self.num_workers+self.read_ahead)
        state_bufs = create_managed_buffergroups(state_specs,self.max_dims,self.num_workers*2+self.read_ahead)
        output_bufs = create_managed_buffergroups(output_dspecs,self.max_dims,self.num_workers+self.read_ahead)

        all_buffers = dict(inputs=input_bufs,states=state_bufs,outputs=output_bufs)

        smc = SharedMemClient(all_buffers,False)

        control_master = mp.Queue()
        control_status = mp.Queue()

        state_returnq =mp.Queue()

        chunkq = mp.Queue()

        chunkoutq = mp.Queue()

        reader_inq = dict(control=mp.Queue(),state_return=state_returnq)
        reader_outq = dict(control=control_master,chunks=chunkq)

        writer_inq = dict(control=mp.Queue(),chunks=chunkoutq)
        writer_outq = dict(control=control_master,log=mp.Queue()) #,chunks=chunkq)

        child_control_qs = [reader_inq['control'],writer_inq['control'],writer_outq['log']]

        self.logger.info("Running simulation...")
        workers = []
        for w in range(self.num_workers):
            worker_inq = dict(control=mp.Queue(),chunks=chunkq)
            worker_outq = dict(control=control_master,state_return=state_returnq,chunks=chunkoutq)
            worker_p = mg.ModelGraphRunner(worker_inq,worker_outq,all_buffers,chunks,periods,worker_nodes,self.model)
            worker_p.start()
            workers.append(worker_p)
            child_control_qs.append(worker_inq['control'])

        control = ControlMaster(control_master, control_status, child_control_qs)
        control.start()

        reader_p = input_reader.InputGraphRunner(reader_inq,reader_outq,all_buffers,chunks,periods,input_nodes,self.model.get_state_keys())
        reader_p.start()

        writer_p = writer.OutputGraphRunner(writer_inq,writer_outq,all_buffers,chunks,periods,output_map)
        writer_p.start()

        log = True
        while log:
            msg = writer_outq['log'].get()
            if msg['subject'] == 'terminate':
                log = False
            else:
                self.logger.info(msg['subject'])

        writer_p.join()

        for w in workers:
            w.qin['control'].put(message('terminate'))
            # control_master.get_nowait()
            w.join()

        reader_inq['control'].put(message('terminate'))
        control_master.put(message('finished'))

        problem = False
        msg = control_status.get()
        if msg['subject'] == 'exception_raised':
            problem = True
        control.join()

        reader_p.join()

        if problem:
            raise Exception("Problem detected")
        self.logger.info("elapsed time: %.2f",time.time() - start)
コード例 #8
0
ファイル: mpi_nodes.py プロジェクト: adivicco47/awra_cms-1
 def _init_graphs(self):
     self.graph = graph.OutputGraph(self.mapping)
     self.graph.initialise(self.period, self.extent)