def test_metrics_spillover(capsys, metric, dimension, namespace, a_hundred_metrics): my_metrics = Metrics() my_metrics.add_namespace(**namespace) my_metrics.add_dimension(**dimension) for _metric in a_hundred_metrics: my_metrics.add_metric(**_metric) @my_metrics.log_metrics def lambda_handler(evt, handler): my_metrics.add_metric(**metric) return True lambda_handler({}, {}) output = capsys.readouterr().out.strip() spillover_metrics, single_metric = output.split("\n") spillover_metrics = json.loads(spillover_metrics) single_metric = json.loads(single_metric) expected_single_metric = serialize_single_metric(metric=metric, dimension=dimension, namespace=namespace) expected_spillover_metrics = serialize_metrics( metrics=a_hundred_metrics, dimensions=[dimension], namespace=namespace ) remove_timestamp(metrics=[spillover_metrics, expected_spillover_metrics, single_metric, expected_single_metric]) assert single_metric["_aws"] == expected_single_metric["_aws"] assert spillover_metrics["_aws"] == expected_spillover_metrics["_aws"]
def test_log_metrics_during_exception(capsys, metric, dimension, namespace): # GIVEN Metrics is initialized my_metrics = Metrics() my_metrics.add_metric(**metric) my_metrics.add_dimension(**dimension) my_metrics.add_namespace(**namespace) # WHEN log_metrics is used to serialize metrics # but an error has been raised during handler execution @my_metrics.log_metrics def lambda_handler(evt, context): raise ValueError("Bubble up") with pytest.raises(ValueError): lambda_handler({}, {}) output = json.loads(capsys.readouterr().out.strip()) expected = serialize_single_metric(metric=metric, dimension=dimension, namespace=namespace) remove_timestamp(metrics=[output, expected]) # Timestamp will always be different # THEN we should log metrics and propagate the exception up assert expected["_aws"] == output["_aws"]
def test_metrics_spillover(monkeypatch, capsys, metric, dimension, namespace, a_hundred_metrics): # GIVEN Metrics is initialized and we have over a hundred metrics to add my_metrics = Metrics() my_metrics.add_dimension(**dimension) my_metrics.add_namespace(**namespace) # WHEN we add more than 100 metrics for _metric in a_hundred_metrics: my_metrics.add_metric(**_metric) # THEN it should serialize and flush all metrics at the 100th # and clear all metrics and dimensions from memory output = json.loads(capsys.readouterr().out.strip()) spillover_metrics = output["_aws"]["CloudWatchMetrics"][0]["Metrics"] assert my_metrics.metric_set == {} assert len(spillover_metrics) == 100 # GIVEN we add the 101th metric # WHEN we already had a Metric class instance # with an existing dimension set from the previous 100th metric batch my_metrics.add_metric(**metric) # THEN serializing the 101th metric should # create a new EMF object with a single metric in it (101th) # and contain have the same dimension we previously added serialized_101th_metric = my_metrics.serialize_metric_set() expected_101th_metric = serialize_single_metric(metric=metric, dimension=dimension, namespace=namespace) remove_timestamp(metrics=[serialized_101th_metric, expected_101th_metric]) assert serialized_101th_metric["_aws"] == expected_101th_metric["_aws"]
def test_log_metrics(capsys, metrics, dimensions, namespace): # GIVEN Metrics is initialized my_metrics = Metrics() my_metrics.add_namespace(**namespace) for metric in metrics: my_metrics.add_metric(**metric) for dimension in dimensions: my_metrics.add_dimension(**dimension) # WHEN we utilize log_metrics to serialize # and flush all metrics at the end of a function execution @my_metrics.log_metrics def lambda_handler(evt, ctx): return True lambda_handler({}, {}) output = json.loads(capsys.readouterr().out.strip()) expected = serialize_metrics(metrics=metrics, dimensions=dimensions, namespace=namespace) remove_timestamp(metrics=[output, expected]) # Timestamp will always be different # THEN we should have no exceptions # and a valid EMF object should've been flushed correctly assert expected["_aws"] == output["_aws"] for dimension in dimensions: assert dimension["name"] in output
def test_metrics_reuse_metric_set(metric, dimension, namespace): # GIVEN Metrics is initialized my_metrics = Metrics() my_metrics.add_metric(**metric) # WHEN Metrics is initialized one more time my_metrics_2 = Metrics() # THEN Both class instances should have the same metric set assert my_metrics_2.metric_set == my_metrics.metric_set
def serialize_metrics(metrics: List[Dict], dimensions: List[Dict], namespace: Dict) -> Dict: """ Helper function to build EMF object from a list of metrics, dimensions """ my_metrics = Metrics() for dimension in dimensions: my_metrics.add_dimension(**dimension) my_metrics.add_namespace(**namespace) for metric in metrics: my_metrics.add_metric(**metric) if len(metrics) != 100: return my_metrics.serialize_metric_set()
def test_multiple_metrics(metrics, dimensions, namespace): my_metrics = Metrics() for metric in metrics: my_metrics.add_metric(**metric) for dimension in dimensions: my_metrics.add_dimension(**dimension) my_metrics.add_namespace(**namespace) output = my_metrics.serialize_metric_set() expected = serialize_metrics(metrics=metrics, dimensions=dimensions, namespace=namespace) remove_timestamp(metrics=[output, expected]) # Timestamp will always be different assert expected["_aws"] == output["_aws"]
def test_log_metrics(capsys, metrics, dimensions, namespace): my_metrics = Metrics() my_metrics.add_namespace(**namespace) for metric in metrics: my_metrics.add_metric(**metric) for dimension in dimensions: my_metrics.add_dimension(**dimension) @my_metrics.log_metrics def lambda_handler(evt, handler): return True lambda_handler({}, {}) output = json.loads(capsys.readouterr().out.strip()) expected = serialize_metrics(metrics=metrics, dimensions=dimensions, namespace=namespace) remove_timestamp(metrics=[output, expected]) # Timestamp will always be different assert expected["_aws"] == output["_aws"]
def test_log_metrics_clear_metrics_after_invocation(metric, dimension, namespace): # GIVEN Metrics is initialized my_metrics = Metrics() my_metrics.add_metric(**metric) my_metrics.add_dimension(**dimension) my_metrics.add_namespace(**namespace) # WHEN log_metrics is used to flush metrics from memory @my_metrics.log_metrics def lambda_handler(evt, context): return True lambda_handler({}, {}) # THEN metric set should be empty after function has been run assert my_metrics.metric_set == {}
def test_log_metrics_error_propagation(capsys, metric, dimension, namespace): # GIVEN Metrics are serialized after handler execution # WHEN If an error occurs and metrics have been added # THEN we should log metrics and propagate exception up my_metrics = Metrics() my_metrics.add_metric(**metric) my_metrics.add_dimension(**dimension) my_metrics.add_namespace(**namespace) @my_metrics.log_metrics def lambda_handler(evt, context): raise ValueError("Bubble up") with pytest.raises(ValueError): lambda_handler({}, {}) output = json.loads(capsys.readouterr().out.strip()) expected = serialize_single_metric(metric=metric, dimension=dimension, namespace=namespace) remove_timestamp(metrics=[output, expected]) # Timestamp will always be different assert expected["_aws"] == output["_aws"]