コード例 #1
0
ファイル: test_dispatch_utils.py プロジェクト: liangshi7/Ax
 def test_choose_generation_strategy(self):
     sobol_gpei = choose_generation_strategy(search_space=get_branin_search_space())
     self.assertEqual(sobol_gpei._steps[0].model.value, "Sobol")
     self.assertEqual(sobol_gpei._steps[1].model.value, "GPEI")
     sobol = choose_generation_strategy(search_space=get_factorial_search_space())
     self.assertEqual(sobol._steps[0].model.value, "Sobol")
     self.assertEqual(len(sobol._steps), 1)
コード例 #2
0
 def test_max_parallelism_adjustments(self):
     # No adjustment.
     sobol_gpei = choose_generation_strategy(search_space=get_branin_search_space())
     self.assertIsNone(sobol_gpei._steps[0].max_parallelism)
     self.assertEqual(
         sobol_gpei._steps[1].max_parallelism, DEFAULT_BAYESIAN_PARALLELISM
     )
     # Impose a cap of 1 on max parallelism for all steps.
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(), max_parallelism_cap=1
     )
     self.assertEqual(
         sobol_gpei._steps[0].max_parallelism,
         sobol_gpei._steps[1].max_parallelism,
         1,
     )
     # Disable enforcing max parallelism for all steps.
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(), max_parallelism_override=-1
     )
     self.assertIsNone(sobol_gpei._steps[0].max_parallelism)
     self.assertIsNone(sobol_gpei._steps[1].max_parallelism)
     # Override max parallelism for all steps.
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(), max_parallelism_override=10
     )
     self.assertEqual(sobol_gpei._steps[0].max_parallelism, 10)
     self.assertEqual(sobol_gpei._steps[1].max_parallelism, 10)
コード例 #3
0
 def test_num_trials(self):
     ss = get_discrete_search_space()
     # Check that with budget that is lower than exhaustive, BayesOpt is used.
     sobol_gpei = choose_generation_strategy(search_space=ss, num_trials=11)
     self.assertEqual(sobol_gpei._steps[0].model.value, "Sobol")
     self.assertEqual(sobol_gpei._steps[1].model.value, "BO_MIXED")
     # Check that with budget that is exhaustive, Sobol is used.
     sobol = choose_generation_strategy(search_space=ss, num_trials=12)
     self.assertEqual(sobol._steps[0].model.value, "Sobol")
     self.assertEqual(len(sobol._steps), 1)
コード例 #4
0
ファイル: test_dispatch_utils.py プロジェクト: liangshi7/Ax
 def test_enforce_sequential_optimization(self):
     sobol_gpei = choose_generation_strategy(search_space=get_branin_search_space())
     self.assertEqual(sobol_gpei._steps[0].num_arms, 5)
     self.assertTrue(sobol_gpei._steps[0].enforce_num_arms)
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(),
         enforce_sequential_optimization=False,
     )
     self.assertEqual(sobol_gpei._steps[0].num_arms, 5)
     self.assertFalse(sobol_gpei._steps[0].enforce_num_arms)
コード例 #5
0
 def test_max_parallelism_adjustments(self):
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(), max_parallelism_cap=1)
     self.assertEqual(
         sobol_gpei._steps[0].max_parallelism,
         sobol_gpei._steps[1].max_parallelism,
         1,
     )
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(), no_max_parallelism=True)
     self.assertIsNone(sobol_gpei._steps[0].max_parallelism)
     self.assertIsNone(sobol_gpei._steps[1].max_parallelism)
コード例 #6
0
 def test_enforce_sequential_optimization(self):
     sobol_gpei = choose_generation_strategy(search_space=get_branin_search_space())
     self.assertEqual(sobol_gpei._steps[0].num_trials, 5)
     self.assertTrue(sobol_gpei._steps[0].enforce_num_trials)
     self.assertIsNotNone(sobol_gpei._steps[1].max_parallelism)
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(),
         enforce_sequential_optimization=False,
     )
     self.assertEqual(sobol_gpei._steps[0].num_trials, 5)
     self.assertFalse(sobol_gpei._steps[0].enforce_num_trials)
     self.assertIsNone(sobol_gpei._steps[1].max_parallelism)
コード例 #7
0
ファイル: managed_loop.py プロジェクト: pr0d33p/Ax
 def __init__(
     self,
     experiment: Experiment,
     total_trials: int = 20,
     arms_per_trial: int = 1,
     random_seed: Optional[int] = None,
     wait_time: int = 0,
     run_async: bool = False,  # TODO[Lena],
     generation_strategy: Optional[GenerationStrategy] = None,
 ) -> None:
     assert not run_async, "OptimizationLoop does not yet support async."
     self.wait_time = wait_time
     self.total_trials = total_trials
     self.arms_per_trial = arms_per_trial
     self.random_seed = random_seed
     assert len(experiment.trials) == 0, (
         "Optimization Loop should not be initialized with an experiment "
         "that has trials already.")
     self.experiment = experiment
     if generation_strategy is None:
         self.generation_strategy = choose_generation_strategy(
             search_space=experiment.search_space,
             use_batch_trials=self.arms_per_trial > 1,
             random_seed=self.random_seed,
         )
     else:
         self.generation_strategy = generation_strategy
     self.current_trial = 0
コード例 #8
0
ファイル: test_dispatch_utils.py プロジェクト: Balandat/Ax
 def test_set_should_deduplicate(self):
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(),
         use_batch_trials=True,
         num_initialization_trials=3,
     )
     self.assertListEqual([s.should_deduplicate for s in sobol_gpei._steps],
                          [False] * 2)
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(),
         use_batch_trials=True,
         num_initialization_trials=3,
         should_deduplicate=True,
     )
     self.assertListEqual([s.should_deduplicate for s in sobol_gpei._steps],
                          [True] * 2)
コード例 #9
0
 def setUp(self):
     self.branin_experiment = get_branin_experiment()
     self.branin_experiment._properties[
         Keys.IMMUTABLE_SEARCH_SPACE_AND_OPT_CONF] = True
     self.branin_experiment_no_impl_metrics = Experiment(
         search_space=get_branin_search_space(),
         optimization_config=OptimizationConfig(objective=Objective(
             metric=Metric(name="branin"))),
     )
     self.sobol_GPEI_GS = choose_generation_strategy(
         search_space=get_branin_search_space())
     self.two_sobol_steps_GS = GenerationStrategy(  # Contrived GS to ensure
         steps=[  # that `DataRequiredError` is property handled in scheduler.
             GenerationStep(  # This error is raised when not enough trials
                 model=Models.
                 SOBOL,  # have been observed to proceed to next
                 num_trials=5,  # geneneration step.
                 min_trials_observed=3,
                 max_parallelism=2,
             ),
             GenerationStep(model=Models.SOBOL,
                            num_trials=-1,
                            max_parallelism=3),
         ])
     # GS to force the scheduler to poll completed trials after each ran trial.
     self.sobol_GS_no_parallelism = GenerationStrategy(steps=[
         GenerationStep(
             model=Models.SOBOL, num_trials=-1, max_parallelism=1)
     ])
コード例 #10
0
ファイル: test_dispatch_utils.py プロジェクト: liangshi7/Ax
 def test_setting_random_seed(self):
     sobol = choose_generation_strategy(
         search_space=get_factorial_search_space(), random_seed=9
     )
     sobol.gen(experiment=get_experiment())
     # First model is actually a bridge, second is the Sobol engine.
     self.assertEqual(sobol.model.model.seed, 9)
コード例 #11
0
    def load_experiment_from_database(self, experiment_name: str) -> None:
        """Load an existing experiment from database using the `DBSettings`
        passed to this `AxClient` on instantiation.

        Args:
            experiment_name: Name of the experiment.

        Returns:
            Experiment object.
        """
        if not self.db_settings:
            raise ValueError(  # pragma: no cover
                "Cannot load an experiment in the absence of the DB settings."
                "Please initialize `AxClient` with DBSettings.")
        experiment, generation_strategy = load_experiment_and_generation_strategy(
            experiment_name=experiment_name, db_settings=self.db_settings)
        self._experiment = experiment
        logger.info(f"Loaded {experiment}.")
        if generation_strategy is None:  # pragma: no cover
            self._generation_strategy = choose_generation_strategy(
                # pyre-fixme[16]: `Optional` has no attribute `search_space`.
                search_space=self._experiment.search_space,
                enforce_sequential_optimization=self.
                _enforce_sequential_optimization,
                random_seed=self._random_seed,
            )
        else:
            self._generation_strategy = generation_strategy
            logger.info(
                f"Using generation strategy associated with the loaded experiment:"
                f" {generation_strategy}.")
コード例 #12
0
ファイル: test_sqa_store.py プロジェクト: bitnot/Ax
    def testUpdateGenerationStrategyIncrementally(self):
        experiment = get_branin_experiment()
        generation_strategy = choose_generation_strategy(
            experiment.search_space)
        save_experiment(experiment=experiment)
        save_generation_strategy(generation_strategy=generation_strategy)

        # add generator runs, save, reload
        generator_runs = []
        for i in range(7):
            data = get_branin_data() if i > 0 else None
            gr = generation_strategy.gen(experiment, data=data)
            generator_runs.append(gr)
            trial = experiment.new_trial(generator_run=gr).mark_running(
                no_runner_required=True)
            trial.mark_completed()

        save_experiment(experiment=experiment)
        update_generation_strategy(generation_strategy=generation_strategy,
                                   generator_runs=generator_runs)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)

        self.assertEqual(generation_strategy._curr.index,
                         loaded_generation_strategy._curr.index, 1)
        self.assertEqual(len(loaded_generation_strategy._generator_runs), 7)
コード例 #13
0
 def test_fixed_num_initialization_trials(self):
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(),
         use_batch_trials=True,
         num_initialization_trials=3,
     )
     self.assertEqual(sobol_gpei._steps[0].num_trials, 3)
コード例 #14
0
ファイル: test_dispatch_utils.py プロジェクト: Balandat/Ax
 def test_winsorization(self):
     winsorized = choose_generation_strategy(
         search_space=get_branin_search_space(),
         winsorization_config=WinsorizationConfig(upper_quantile_margin=2),
     )
     self.assertIn(
         "Winsorize",
         winsorized._steps[1].model_kwargs.get("transform_configs"))
コード例 #15
0
ファイル: test_dispatch_utils.py プロジェクト: liangshi7/Ax
 def test_winsorization(self):
     winsorized = choose_generation_strategy(
         search_space=get_branin_search_space(),
         winsorize_botorch_model=True,
         winsorization_limits=(None, 0, 2),
     )
     self.assertIn(
         "Winsorize", winsorized._steps[1].model_kwargs.get("transform_configs")
     )
コード例 #16
0
ファイル: modeling_stubs.py プロジェクト: sailfish009/Ax
def get_generation_strategy(
        with_experiment: bool = False) -> GenerationStrategy:
    gs = choose_generation_strategy(search_space=get_search_space())
    if with_experiment:
        gs._experiment = get_experiment()
    fake_func = get_experiment
    # pyre-ignore[16]: testing hack to test serialization of callable kwargs
    # in generation steps.
    gs._steps[0].model_kwargs["model_constructor"] = fake_func
    return gs
コード例 #17
0
ファイル: test_report_utils.py プロジェクト: kjanoudi/Ax
 def test_get_standard_plots(self):
     exp = get_branin_experiment()
     self.assertEqual(
         len(
             get_standard_plots(experiment=exp,
                                model=get_generation_strategy().model)),
         0,
     )
     exp = get_branin_experiment(with_batch=True, minimize=True)
     exp.trials[0].run()
     gs = choose_generation_strategy(search_space=exp.search_space)
     gs._model = Models.BOTORCH(experiment=exp, data=exp.fetch_data())
     plots = get_standard_plots(experiment=exp, model=gs.model)
     self.assertEqual(len(plots), 5)
     self.assertTrue(all(isinstance(plot, go.Figure) for plot in plots))
     exp = get_branin_experiment_with_multi_objective(with_batch=True)
     exp.trials[0].run()
     gs = choose_generation_strategy(
         search_space=exp.search_space,
         optimization_config=exp.optimization_config)
     gs._model = Models.BOTORCH(experiment=exp, data=exp.fetch_data())
     plots = get_standard_plots(experiment=exp, model=gs.model)
     self.assertEqual(len(plots), 6)
コード例 #18
0
 def test_choose_generation_strategy(self):
     with self.subTest("GPEI"):
         sobol_gpei = choose_generation_strategy(
             search_space=get_branin_search_space()
         )
         self.assertEqual(sobol_gpei._steps[0].model.value, "Sobol")
         self.assertEqual(sobol_gpei._steps[0].num_trials, 5)
         self.assertEqual(sobol_gpei._steps[1].model.value, "GPEI")
     with self.subTest("MOO"):
         sobol_gpei = choose_generation_strategy(
             search_space=get_branin_search_space(),
             optimization_config=MultiObjectiveOptimizationConfig(
                 objective=MultiObjective(objectives=[])
             ),
         )
         self.assertEqual(sobol_gpei._steps[0].model.value, "Sobol")
         self.assertEqual(sobol_gpei._steps[0].num_trials, 5)
         self.assertEqual(sobol_gpei._steps[1].model.value, "MOO")
     with self.subTest("Sobol (we can try every option)"):
         sobol = choose_generation_strategy(
             search_space=get_factorial_search_space(), num_trials=1000
         )
         self.assertEqual(sobol._steps[0].model.value, "Sobol")
         self.assertEqual(len(sobol._steps), 1)
     with self.subTest("Sobol (because of too many categories)"):
         sobol_large = choose_generation_strategy(
             search_space=get_large_factorial_search_space()
         )
         self.assertEqual(sobol_large._steps[0].model.value, "Sobol")
         self.assertEqual(len(sobol_large._steps), 1)
     with self.subTest("GPEI-Batched"):
         sobol_gpei_batched = choose_generation_strategy(
             search_space=get_branin_search_space(), use_batch_trials=3
         )
         self.assertEqual(sobol_gpei_batched._steps[0].num_trials, 1)
     with self.subTest("BO_MIXED (purely categorical)"):
         bo_mixed = choose_generation_strategy(
             search_space=get_factorial_search_space()
         )
         self.assertEqual(bo_mixed._steps[0].model.value, "Sobol")
         self.assertEqual(bo_mixed._steps[0].num_trials, 5)
         self.assertEqual(bo_mixed._steps[1].model.value, "BO_MIXED")
     with self.subTest("BO_MIXED (mixed search space)"):
         bo_mixed_2 = choose_generation_strategy(
             search_space=get_branin_search_space(with_choice_parameter=True)
         )
         self.assertEqual(bo_mixed_2._steps[0].model.value, "Sobol")
         self.assertEqual(bo_mixed_2._steps[0].num_trials, 5)
         self.assertEqual(bo_mixed_2._steps[1].model.value, "BO_MIXED")
コード例 #19
0
ファイル: ax_client.py プロジェクト: paramoecium/Ax
 def _set_generation_strategy(
     self, choose_generation_strategy_kwargs: Optional[Dict[str, Any]] = None
 ) -> None:
     """Selects the generation strategy and applies specified dispatch kwargs,
     if any.
     """
     choose_generation_strategy_kwargs = choose_generation_strategy_kwargs or {}
     random_seed = choose_generation_strategy_kwargs.pop(
         "random_seed", self._random_seed
     )
     enforce_sequential_optimization = choose_generation_strategy_kwargs.pop(
         "enforce_sequential_optimization", self._enforce_sequential_optimization
     )
     if self._generation_strategy is None:
         self._generation_strategy = choose_generation_strategy(
             search_space=self.experiment.search_space,
             enforce_sequential_optimization=enforce_sequential_optimization,
             random_seed=random_seed,
             **choose_generation_strategy_kwargs,
         )
コード例 #20
0
    def __init__(self, serialized_filepath=None):
        # Give ourselves the ability to resume this experiment later.
        self.serialized_filepath = serialized_filepath
        if serialized_filepath is not None and os.path.exists(
                serialized_filepath):
            with open(serialized_filepath, "r") as f:
                serialized = json.load(f)
            self.initialize_from_json_snapshot(serialized)
        else:
            # Create a CoreAxClient.
            search_space = SearchSpace(parameters=[
                RangeParameter(
                    "x", ParameterType.FLOAT, lower=12.2, upper=602.2),
            ])

            optimization_config = OptimizationConfig(
                objective=MultiObjective(
                    metrics=[
                        # Currently MultiObjective doesn't work with
                        # lower_is_better=True.
                        # https://github.com/facebook/Ax/issues/289
                        Metric(name="neg_distance17", lower_is_better=False),
                        Metric(name="neg_distance33", lower_is_better=False)
                    ],
                    minimize=False,
                ), )

            generation_strategy = choose_generation_strategy(
                search_space,
                enforce_sequential_optimization=False,
                no_max_parallelism=True,
                num_trials=NUM_TRIALS,
                num_initialization_trials=NUM_RANDOM)

            super().__init__(experiment=Experiment(
                search_space=search_space,
                optimization_config=optimization_config),
                             generation_strategy=generation_strategy,
                             verbose=True)
コード例 #21
0
search_space = SearchSpace(parameters=[
    RangeParameter("x", ParameterType.FLOAT, lower=12.2, upper=602.2),
])

optimization_config = OptimizationConfig(
    objective=MultiObjective(
        metrics=[
            # Currently MultiObjective doesn't work with lower_is_better=True.
            # https://github.com/facebook/Ax/issues/289
            Metric(name="neg_distance17", lower_is_better=False),
            Metric(name="neg_distance33", lower_is_better=False)
        ],
        minimize=False,
    ), )

generation_strategy = choose_generation_strategy(
    search_space, num_trials=NUM_TRIALS, num_initialization_trials=NUM_RANDOM)

ax_client = CoreAxClient(experiment=Experiment(
    search_space=search_space, optimization_config=optimization_config),
                         generation_strategy=generation_strategy)

for _ in range(NUM_TRIALS):
    parameters, trial_index = ax_client.get_next_trial(model_gen_options={
        "acquisition_function_kwargs": {
            "random_scalarization": True,
        },
    })
    ax_client.complete_trial(trial_index=trial_index,
                             raw_data={
                                 "neg_distance17":
                                 (-example_f17(parameters["x"]), None),
コード例 #22
0
def get_generation_strategy() -> GenerationStrategy:
    return choose_generation_strategy(search_space=get_search_space())
コード例 #23
0
ファイル: test_dispatch_utils.py プロジェクト: Balandat/Ax
 def test_choose_generation_strategy(self):
     with self.subTest("GPEI"):
         sobol_gpei = choose_generation_strategy(
             search_space=get_branin_search_space())
         self.assertEqual(sobol_gpei._steps[0].model.value, "Sobol")
         self.assertEqual(sobol_gpei._steps[0].num_trials, 5)
         self.assertEqual(sobol_gpei._steps[1].model.value, "GPEI")
         self.assertIsNone(sobol_gpei._steps[1].model_kwargs)
         sobol_gpei = choose_generation_strategy(
             search_space=get_branin_search_space(), verbose=True)
         self.assertIsNone(sobol_gpei._steps[1].model_kwargs)
     with self.subTest("MOO"):
         optimization_config = MultiObjectiveOptimizationConfig(
             objective=MultiObjective(objectives=[]))
         sobol_gpei = choose_generation_strategy(
             search_space=get_branin_search_space(),
             optimization_config=optimization_config,
         )
         self.assertEqual(sobol_gpei._steps[0].model.value, "Sobol")
         self.assertEqual(sobol_gpei._steps[0].num_trials, 5)
         self.assertEqual(sobol_gpei._steps[1].model.value, "MOO")
         model_kwargs = sobol_gpei._steps[1].model_kwargs
         self.assertEqual(list(model_kwargs.keys()),
                          ["transforms", "transform_configs"])
         self.assertGreater(len(model_kwargs["transforms"]), 0)
         transform_config_dict = {
             "Winsorize": {
                 "optimization_config": optimization_config
             }
         }
         self.assertEqual(model_kwargs["transform_configs"],
                          transform_config_dict)
     with self.subTest("Sobol (we can try every option)"):
         sobol = choose_generation_strategy(
             search_space=get_factorial_search_space(), num_trials=1000)
         self.assertEqual(sobol._steps[0].model.value, "Sobol")
         self.assertEqual(len(sobol._steps), 1)
     with self.subTest("Sobol (because of too many categories)"):
         ss = get_large_factorial_search_space()
         sobol_large = choose_generation_strategy(
             search_space=get_large_factorial_search_space(), verbose=True)
         self.assertEqual(sobol_large._steps[0].model.value, "Sobol")
         self.assertEqual(len(sobol_large._steps), 1)
     with self.subTest("GPEI-Batched"):
         sobol_gpei_batched = choose_generation_strategy(
             search_space=get_branin_search_space(), use_batch_trials=3)
         self.assertEqual(sobol_gpei_batched._steps[0].num_trials, 1)
     with self.subTest("BO_MIXED (purely categorical)"):
         bo_mixed = choose_generation_strategy(
             search_space=get_factorial_search_space())
         self.assertEqual(bo_mixed._steps[0].model.value, "Sobol")
         self.assertEqual(bo_mixed._steps[0].num_trials, 6)
         self.assertEqual(bo_mixed._steps[1].model.value, "BO_MIXED")
         self.assertIsNone(bo_mixed._steps[1].model_kwargs)
     with self.subTest("BO_MIXED (mixed search space)"):
         ss = get_branin_search_space(with_choice_parameter=True)
         ss.parameters["x2"]._is_ordered = False
         bo_mixed_2 = choose_generation_strategy(search_space=ss)
         self.assertEqual(bo_mixed_2._steps[0].model.value, "Sobol")
         self.assertEqual(bo_mixed_2._steps[0].num_trials, 5)
         self.assertEqual(bo_mixed_2._steps[1].model.value, "BO_MIXED")
         self.assertIsNone(bo_mixed_2._steps[1].model_kwargs)
     with self.subTest("BO_MIXED (mixed multi-objective optimization)"):
         search_space = get_branin_search_space(with_choice_parameter=True)
         search_space.parameters["x2"]._is_ordered = False
         optimization_config = MultiObjectiveOptimizationConfig(
             objective=MultiObjective(objectives=[]))
         moo_mixed = choose_generation_strategy(
             search_space=search_space,
             optimization_config=optimization_config)
         self.assertEqual(moo_mixed._steps[0].model.value, "Sobol")
         self.assertEqual(moo_mixed._steps[0].num_trials, 5)
         self.assertEqual(moo_mixed._steps[1].model.value, "BO_MIXED")
         model_kwargs = moo_mixed._steps[1].model_kwargs
         self.assertEqual(list(model_kwargs.keys()),
                          ["transforms", "transform_configs"])
         self.assertGreater(len(model_kwargs["transforms"]), 0)
         transform_config_dict = {
             "Winsorize": {
                 "optimization_config": optimization_config
             }
         }
         self.assertEqual(model_kwargs["transform_configs"],
                          transform_config_dict)
     with self.subTest("SAASBO"):
         sobol_fullybayesian = choose_generation_strategy(
             search_space=get_branin_search_space(),
             use_batch_trials=True,
             num_initialization_trials=3,
             use_saasbo=True,
         )
         self.assertEqual(sobol_fullybayesian._steps[0].model.value,
                          "Sobol")
         self.assertEqual(sobol_fullybayesian._steps[0].num_trials, 3)
         self.assertEqual(sobol_fullybayesian._steps[1].model.value,
                          "FullyBayesian")
         self.assertTrue(
             sobol_fullybayesian._steps[1].model_kwargs["verbose"])
     with self.subTest("SAASBO MOO"):
         sobol_fullybayesianmoo = choose_generation_strategy(
             search_space=get_branin_search_space(),
             use_batch_trials=True,
             num_initialization_trials=3,
             use_saasbo=True,
             optimization_config=MultiObjectiveOptimizationConfig(
                 objective=MultiObjective(objectives=[])),
         )
         self.assertEqual(sobol_fullybayesianmoo._steps[0].model.value,
                          "Sobol")
         self.assertEqual(sobol_fullybayesianmoo._steps[0].num_trials, 3)
         self.assertEqual(sobol_fullybayesianmoo._steps[1].model.value,
                          "FullyBayesianMOO")
         self.assertTrue(
             sobol_fullybayesianmoo._steps[1].model_kwargs["verbose"])
     with self.subTest("SAASBO"):
         sobol_fullybayesian_large = choose_generation_strategy(
             search_space=get_large_ordinal_search_space(
                 n_ordinal_choice_parameters=5,
                 n_continuous_range_parameters=10),
             use_saasbo=True,
         )
         self.assertEqual(sobol_fullybayesian_large._steps[0].model.value,
                          "Sobol")
         self.assertEqual(sobol_fullybayesian_large._steps[0].num_trials,
                          30)
         self.assertEqual(sobol_fullybayesian_large._steps[1].model.value,
                          "FullyBayesian")
         self.assertTrue(
             sobol_fullybayesian_large._steps[1].model_kwargs["verbose"])
     with self.subTest("num_initialization_trials"):
         ss = get_large_factorial_search_space()
         for _, param in ss.parameters.items():
             param._is_ordered = True
         # 2 * len(ss.parameters) init trials are performed if num_trials is large
         gs_12_init_trials = choose_generation_strategy(search_space=ss,
                                                        num_trials=100)
         self.assertEqual(gs_12_init_trials._steps[0].model.value, "Sobol")
         self.assertEqual(gs_12_init_trials._steps[0].num_trials, 12)
         self.assertEqual(gs_12_init_trials._steps[1].model.value, "GPEI")
         # at least 5 initialization trials are performed
         gs_5_init_trials = choose_generation_strategy(search_space=ss,
                                                       num_trials=0)
         self.assertEqual(gs_5_init_trials._steps[0].model.value, "Sobol")
         self.assertEqual(gs_5_init_trials._steps[0].num_trials, 5)
         self.assertEqual(gs_5_init_trials._steps[1].model.value, "GPEI")
         # avoid spending >20% of budget on initialization trials if there are
         # more than 5 initialization trials
         gs_6_init_trials = choose_generation_strategy(search_space=ss,
                                                       num_trials=30)
         self.assertEqual(gs_6_init_trials._steps[0].model.value, "Sobol")
         self.assertEqual(gs_6_init_trials._steps[0].num_trials, 6)
         self.assertEqual(gs_6_init_trials._steps[1].model.value, "GPEI")
コード例 #24
0
    def create_experiment(
        self,
        parameters: List[Dict[str, Union[TParamValue, List[TParamValue]]]],
        name: Optional[str] = None,
        objective_name: Optional[str] = None,
        minimize: bool = False,
        parameter_constraints: Optional[List[str]] = None,
        outcome_constraints: Optional[List[str]] = None,
        status_quo: Optional[TParameterization] = None,
        overwrite_existing_experiment: bool = False,
        experiment_type: Optional[str] = None,
    ) -> None:
        """Create a new experiment and save it if DBSettings available.

        Args:
            parameters: List of dictionaries representing parameters in the
                experiment search space. Required elements in the dictionaries
                are: "name" (name of this parameter, string), "type" (type of the
                parameter: "range", "fixed", or "choice", string), and "bounds"
                for range parameters (list of two values, lower bound first),
                "values" for choice parameters (list of values), and "value" for
                fixed parameters (single value).
            objective: Name of the metric used as objective in this experiment.
                This metric must be present in `raw_data` argument to `complete_trial`.
            name: Name of the experiment to be created.
            minimize: Whether this experiment represents a minimization problem.
            parameter_constraints: List of string representation of parameter
                constraints, such as "x3 >= x4" or "x3 + x4 + x5 >= 2". For sum
                constraints, any number of arguments is accepted, and acceptable
                operators are "<=" and ">=".
            outcome_constraints: List of string representation of outcome
                constraints of form "metric_name >= bound", like "m1 <= 3."
            status_quo: Parameterization of the current state of the system.
                If set, this will be added to each trial to be evaluated alongside
                test configurations.
            overwrite_existing_experiment: If `DBSettings` were provided on
                instantiation and the experiment being created has the same name
                as some experiment already stored, whether to overwrite the
                existing experiment. Defaults to False.
        """
        if self.db_settings and not name:
            raise ValueError(  # pragma: no cover
                "Must give the experiment a name if `db_settings` is not None."
            )
        if self.db_settings:
            existing = None
            try:
                existing, _ = load_experiment_and_generation_strategy(
                    experiment_name=not_none(name),
                    db_settings=self.db_settings)
            except ValueError:  # Experiment does not exist, nothing to do.
                pass
            if existing and overwrite_existing_experiment:
                logger.info(f"Overwriting existing experiment {name}.")
            elif existing:
                raise ValueError(
                    f"Experiment {name} exists; set the `overwrite_existing_"
                    "experiment` to `True` to overwrite with new experiment "
                    "or use `ax_client.load_experiment_from_database` to "
                    "continue an existing experiment.")

        self._experiment = make_experiment(
            name=name,
            parameters=parameters,
            objective_name=objective_name,
            minimize=minimize,
            parameter_constraints=parameter_constraints,
            outcome_constraints=outcome_constraints,
            status_quo=status_quo,
            experiment_type=experiment_type,
        )
        if self._generation_strategy is None:
            self._generation_strategy = choose_generation_strategy(
                search_space=self._experiment.search_space,
                enforce_sequential_optimization=self.
                _enforce_sequential_optimization,
                random_seed=self._random_seed,
            )
        self._save_experiment_and_generation_strategy_to_db_if_possible(
            overwrite_existing_experiment=True)
コード例 #25
0
ファイル: test_dispatch_utils.py プロジェクト: Balandat/Ax
 def test_setting_experiment_attribute(self):
     exp = get_experiment()
     gs = choose_generation_strategy(search_space=exp.search_space,
                                     experiment=exp)
     self.assertEqual(gs._experiment, exp)
コード例 #26
0
ファイル: modeling_stubs.py プロジェクト: xiecong/Ax
def get_generation_strategy(
        with_experiment: bool = False) -> GenerationStrategy:
    gs = choose_generation_strategy(search_space=get_search_space())
    if with_experiment:
        gs._experiment = get_experiment()
    return gs
コード例 #27
0
 def test_use_batch_trials(self):
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(), use_batch_trials=True
     )
     self.assertEqual(sobol_gpei._steps[0].num_trials, 1)
コード例 #28
0
    def __init__(self, serialized_filepath=None):
        self.serialized_filepath = serialized_filepath

        if serialized_filepath is not None and os.path.exists(
                serialized_filepath):
            with open(serialized_filepath, "r") as f:
                serialized = json.load(f)
            other = CoreAxClient.from_json_snapshot(serialized)
            self.__dict__.update(other.__dict__)
        else:
            parameters = [
                RangeParameter("num_epochs",
                               ParameterType.INT,
                               lower=30,
                               upper=200),
                RangeParameter("log2_batch_size",
                               ParameterType.INT,
                               lower=5,
                               upper=8),
                RangeParameter("lr",
                               ParameterType.FLOAT,
                               lower=1e-5,
                               upper=0.3,
                               log_scale=True),
                RangeParameter("gamma_prewarmup",
                               ParameterType.FLOAT,
                               lower=0.5,
                               upper=1.0),
                RangeParameter("gamma_warmup",
                               ParameterType.FLOAT,
                               lower=0.5,
                               upper=1.0),
                RangeParameter("gamma_postwarmup",
                               ParameterType.FLOAT,
                               lower=0.5,
                               upper=0.985),
                RangeParameter("reg_warmup_start_epoch",
                               ParameterType.INT,
                               lower=1,
                               upper=200),
                RangeParameter("reg_warmup_end_epoch",
                               ParameterType.INT,
                               lower=1,
                               upper=200),

                # Parameter constraints not allowed on log scale
                # parameters. So implement the log ourselves.
                RangeParameter("log_reg_factor_start",
                               ParameterType.FLOAT,
                               lower=math.log(1e-4),
                               upper=math.log(1.0)),
                RangeParameter("log_reg_factor_end",
                               ParameterType.FLOAT,
                               lower=math.log(0.1),
                               upper=math.log(10.0)),
            ]

            pm = {p.name: p for p in parameters}
            search_space = SearchSpace(
                parameters=parameters,
                parameter_constraints=[
                    # reg_warmup_start_epoch <= reg_warmup_end_epoch
                    OrderConstraint(pm["reg_warmup_start_epoch"],
                                    pm["reg_warmup_end_epoch"]),
                    # reg_warmup_end_epoch <= num_epochs
                    OrderConstraint(pm["reg_warmup_end_epoch"],
                                    pm["num_epochs"]),
                    # log_reg_factor_start <= log_reg_factor_end
                    OrderConstraint(pm["log_reg_factor_start"],
                                    pm["log_reg_factor_end"]),
                ])

            optimization_config = OptimizationConfig(objective=MultiObjective(
                metrics=[
                    Metric(name="neg_log_error", lower_is_better=False),
                    Metric(name="neg_log_num_nonzero_weights",
                           lower_is_better=False)
                ],
                minimize=False,
            ), )

            generation_strategy = choose_generation_strategy(
                search_space,
                enforce_sequential_optimization=False,
                no_max_parallelism=True,
                num_trials=NUM_TRIALS,
                num_initialization_trials=NUM_RANDOM)

            super().__init__(experiment=Experiment(
                search_space=search_space,
                optimization_config=optimization_config),
                             generation_strategy=generation_strategy)
コード例 #29
0
 def test_max_parallelism_override(self):
     sobol_gpei = choose_generation_strategy(
         search_space=get_branin_search_space(), max_parallelism_override=10
     )
     self.assertTrue(all(s.max_parallelism == 10 for s in sobol_gpei._steps))
コード例 #30
0
    def create_experiment(
        self,
        parameters: List[Dict[str, Union[TParamValue, List[TParamValue]]]],
        name: Optional[str] = None,
        objective_name: Optional[str] = None,
        minimize: bool = False,
        parameter_constraints: Optional[List[str]] = None,
        outcome_constraints: Optional[List[str]] = None,
        status_quo: Optional[TParameterization] = None,
        overwrite_existing_experiment: bool = False,
        experiment_type: Optional[str] = None,
        choose_generation_strategy_kwargs: Optional[Dict[str, Any]] = None,
    ) -> None:
        """Create a new experiment and save it if DBSettings available.

        Args:
            parameters: List of dictionaries representing parameters in the
                experiment search space. Required elements in the dictionaries
                are: "name" (name of this parameter, string), "type" (type of the
                parameter: "range", "fixed", or "choice", string), and "bounds"
                for range parameters (list of two values, lower bound first),
                "values" for choice parameters (list of values), and "value" for
                fixed parameters (single value).
            objective: Name of the metric used as objective in this experiment.
                This metric must be present in `raw_data` argument to `complete_trial`.
            name: Name of the experiment to be created.
            minimize: Whether this experiment represents a minimization problem.
            parameter_constraints: List of string representation of parameter
                constraints, such as "x3 >= x4" or "-x3 + 2*x4 - 3.5*x5 >= 2". For
                the latter constraints, any number of arguments is accepted, and
                acceptable operators are "<=" and ">=".
            outcome_constraints: List of string representation of outcome
                constraints of form "metric_name >= bound", like "m1 <= 3."
            status_quo: Parameterization of the current state of the system.
                If set, this will be added to each trial to be evaluated alongside
                test configurations.
            overwrite_existing_experiment: If an experiment has already been set
                on this `AxClient` instance, whether to reset it to the new one.
                If overwriting the experiment, generation strategy will be
                re-selected for the new experiment and restarted.
            choose_generation_strategy_kwargs: Keyword arguments to pass to
                `choose_generation_strategy` function which determines what
                generation strategy should be used when none was specified on init.
        """
        if self.db_settings and not name:
            raise ValueError(  # pragma: no cover
                "Must give the experiment a name if `db_settings` is not None."
            )
        if self.db_settings:
            existing = None
            try:
                existing, _ = load_experiment_and_generation_strategy(
                    experiment_name=not_none(name),
                    db_settings=self.db_settings)
            except ValueError:  # Experiment does not exist, nothing to do.
                pass
            if existing and overwrite_existing_experiment:
                logger.info(f"Overwriting existing experiment {name}.")
            elif existing:
                raise ValueError(
                    f"Experiment {name} exists; set the `overwrite_existing_"
                    "experiment` to `True` to overwrite with new experiment "
                    "or use `ax_client.load_experiment_from_database` to "
                    "continue an existing experiment.")
        if self._experiment is not None:
            if overwrite_existing_experiment:
                exp_name = self.experiment._name or "untitled"
                new_exp_name = name or "untitled"
                logger.info(
                    f"Overwriting existing experiment ({exp_name}) on this client "
                    f"with new experiment ({new_exp_name}) and restarting the "
                    "generation strategy.")
                self._generation_strategy = None
            else:
                raise ValueError(
                    f"Experiment already created for this client instance. "
                    "Set the `overwrite_existing_experiment` to `True` to overwrite "
                    "with new experiment.")

        self._experiment = make_experiment(
            name=name,
            parameters=parameters,
            objective_name=objective_name,
            minimize=minimize,
            parameter_constraints=parameter_constraints,
            outcome_constraints=outcome_constraints,
            status_quo=status_quo,
            experiment_type=experiment_type,
        )
        choose_generation_strategy_kwargs = choose_generation_strategy_kwargs or {}
        random_seed = choose_generation_strategy_kwargs.pop(
            "random_seed", self._random_seed)
        enforce_sequential_optimization = choose_generation_strategy_kwargs.pop(
            "enforce_sequential_optimization",
            self._enforce_sequential_optimization)
        if self._generation_strategy is None:
            self._generation_strategy = choose_generation_strategy(
                search_space=not_none(self._experiment).search_space,
                enforce_sequential_optimization=enforce_sequential_optimization,
                random_seed=random_seed,
                **choose_generation_strategy_kwargs,
            )
        self._save_experiment_and_generation_strategy_to_db_if_possible(
            overwrite_existing_experiment=True)