def testdiscreteModelCrossValidate(self): discrete_model = DiscreteModel() with self.assertRaises(NotImplementedError): discrete_model.cross_validate(Xs_train=[[[0]]], Ys_train=[[1]], Yvars_train=[[1]], X_test=[[1]])
def testDiscreteModelFit(self): discrete_model = DiscreteModel() discrete_model.fit( Xs=[[[0]]], Ys=[[0]], Yvars=[[1]], parameter_values=[[0, 1]], outcome_names=[], )
def testdiscreteModelGen(self): discrete_model = DiscreteModel() with self.assertRaises(NotImplementedError): discrete_model.gen( n=1, parameter_values=[[0, 1]], objective_weights=np.array([1]) )
def testdiscreteModelPredict(self): discrete_model = DiscreteModel() with self.assertRaises(NotImplementedError): discrete_model.predict([[0]])
def test_discrete_model_feature_importances(self): discrete_model = DiscreteModel() with self.assertRaises(NotImplementedError): discrete_model.feature_importances()
def test_discrete_model_get_state(self): discrete_model = DiscreteModel() self.assertEqual(discrete_model._get_state(), {})