コード例 #1
0
    def testUpdateGenerationStrategy(self):
        generation_strategy = get_generation_strategy()
        save_generation_strategy(generation_strategy=generation_strategy)

        experiment = get_branin_experiment()
        generation_strategy = get_generation_strategy()
        save_experiment(experiment)

        # add generator run, save, reload
        experiment.new_trial(generator_run=generation_strategy.gen(experiment))
        save_generation_strategy(generation_strategy=generation_strategy)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name
        )
        # `_seen_trial_indices_by_status` attribute of a GS is not saved in DB,
        # so it will be None in the restored version of the GS.
        # Hackily removing it from the original GS to check equality.
        generation_strategy._seen_trial_indices_by_status = None
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        # add another generator run, save, reload
        experiment.new_trial(
            generator_run=generation_strategy.gen(experiment, data=get_branin_data())
        )
        save_generation_strategy(generation_strategy=generation_strategy)
        save_experiment(experiment)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name
        )
        # `_seen_trial_indices_by_status` attribute of a GS is not saved in DB,
        # so it will be None in the restored version of the GS.
        # Hackily removing it from the original GS to check equality.
        generation_strategy._seen_trial_indices_by_status = None
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        # make sure that we can update the experiment too
        experiment.description = "foobar"
        save_experiment(experiment)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name
        )
        self.assertEqual(generation_strategy, loaded_generation_strategy)
        self.assertEqual(
            generation_strategy._experiment.description, experiment.description
        )
        self.assertEqual(
            generation_strategy._experiment.description,
            loaded_generation_strategy._experiment.description,
        )
コード例 #2
0
    def testUpdateGenerationStrategy(self):
        generation_strategy = get_generation_strategy()
        save_generation_strategy(generation_strategy=generation_strategy)

        # Add data, save, reload
        generation_strategy._data = Data(
            df=pd.DataFrame.from_records([{
                "metric_name": "foo",
                "mean": 1,
                "arm_name": "bar"
            }]))
        save_generation_strategy(generation_strategy=generation_strategy)
        loaded_generation_strategy = load_generation_strategy_by_id(
            gs_id=generation_strategy._db_id)
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        experiment = get_branin_experiment()
        generation_strategy = get_generation_strategy()
        save_experiment(experiment)

        # add generator run, save, reload
        experiment.new_trial(generator_run=generation_strategy.gen(experiment))
        save_generation_strategy(generation_strategy=generation_strategy)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        # add another generator run, save, reload
        experiment.new_trial(generator_run=generation_strategy.gen(
            experiment, new_data=get_branin_data()))
        save_generation_strategy(generation_strategy=generation_strategy)
        save_experiment(experiment)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        # make sure that we can update the experiment too
        experiment.description = "foobar"
        save_experiment(experiment)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, loaded_generation_strategy)
        self.assertEqual(generation_strategy._experiment.description,
                         experiment.description)
        self.assertEqual(
            generation_strategy._experiment.description,
            loaded_generation_strategy._experiment.description,
        )
コード例 #3
0
ファイル: test_json_store.py プロジェクト: pr0d33p/Ax
    def testDecodeGenerationStrategy(self):
        generation_strategy = get_generation_strategy()
        experiment = get_branin_experiment()
        gs_json = object_to_json(generation_strategy)
        new_generation_strategy = generation_strategy_from_json(gs_json)
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertGreater(len(new_generation_strategy._steps), 0)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        # Model has not yet been initialized on this GS since it hasn't generated
        # anything yet.
        self.assertIsNone(new_generation_strategy.model)

        # Check that we can encode and decode the generation strategy after
        # it has generated some generator runs.
        generation_strategy = new_generation_strategy
        gr = generation_strategy.gen(experiment)
        gs_json = object_to_json(generation_strategy)
        new_generation_strategy = generation_strategy_from_json(gs_json)
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        # Since this GS has now generated one generator run, model should have
        # been initialized and restored when decoding from JSON.
        self.assertIsInstance(new_generation_strategy.model, ModelBridge)

        # Check that we can encode and decode the generation strategy after
        # it has generated some trials and been updated with some data.
        generation_strategy = new_generation_strategy
        experiment.new_trial(gr)  # Add previously generated GR as trial.
        # Make generation strategy aware of the trial's data via `gen`.
        generation_strategy.gen(experiment, data=get_branin_data())
        gs_json = object_to_json(generation_strategy)
        new_generation_strategy = generation_strategy_from_json(gs_json)
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        self.assertIsInstance(new_generation_strategy.model, ModelBridge)
コード例 #4
0
    def get_random_generation_strategy(self) -> GenerationStrategy:
        """Get an GenerationStrategy instance with random name."""

        generation_strategy = get_generation_strategy()
        gs_name = "".join(random.choice(string.ascii_letters) for i in range(8))
        generation_strategy._name = gs_name
        return generation_strategy
コード例 #5
0
ファイル: test_sqa_store.py プロジェクト: mengwa41/Ax
    def testUpdateGenerationStrategy(self):
        generation_strategy = get_generation_strategy()
        save_generation_strategy(generation_strategy=generation_strategy)

        experiment = get_branin_experiment()
        generation_strategy = get_generation_strategy()
        save_experiment(experiment)

        # add generator run, save, reload
        experiment.new_trial(generator_run=generation_strategy.gen(experiment))
        save_generation_strategy(generation_strategy=generation_strategy)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        # add another generator run, save, reload
        experiment.new_trial(generator_run=generation_strategy.gen(
            experiment, data=get_branin_data()))
        save_generation_strategy(generation_strategy=generation_strategy)
        save_experiment(experiment)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        # During restoration of generation strategy's model from its last generator
        # run, we set `_seen_trial_indices_by_status` to that of the experiment,
        # from which we are grabbing the data to restore the model with. When the
        # experiment was updated more recently than the last `gen` from generation
        # strategy, the generation strategy prior to save might not have 'seen'
        # some recently added trials, so we update the mappings to match and check
        # that the generation strategies are equal otherwise.
        generation_strategy._seen_trial_indices_by_status[
            TrialStatus.CANDIDATE].add(1)
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        # make sure that we can update the experiment too
        experiment.description = "foobar"
        save_experiment(experiment)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, loaded_generation_strategy)
        self.assertEqual(generation_strategy._experiment.description,
                         experiment.description)
        self.assertEqual(
            generation_strategy._experiment.description,
            loaded_generation_strategy._experiment.description,
        )
コード例 #6
0
ファイル: test_report_utils.py プロジェクト: cristicmf/Ax
 def test_get_standard_plots(self):
     exp = get_branin_experiment()
     self.assertEqual(
         len(
             get_standard_plots(
                 experiment=exp,
                 generation_strategy=get_generation_strategy())),
         0,
     )
コード例 #7
0
 def test_save_load_experiment_and_generation_strategy(self):
     exp, gs = load_experiment_and_generation_strategy(
         self.exp.name, self.db_settings)
     self.assertIsNone(gs)
     gs = get_generation_strategy()
     gs._experiment = self.exp
     save_experiment_and_generation_strategy(self.exp, gs, self.db_settings)
     exp, gs = load_experiment_and_generation_strategy(
         self.exp.name, self.db_settings)
     self.assertIsNotNone(gs)
コード例 #8
0
    def setUp(self):
        self.generation_strategy = get_generation_strategy(
            with_experiment=True)
        self.experiment = self.generation_strategy.experiment

        init_test_engine_and_session_factory(force_init=True)
        self.with_db_settings = WithDBSettingsBase(db_settings=DBSettings(
            url="sqlite://"))
        _save_experiment(self.experiment,
                         encoder=self.with_db_settings.db_settings.encoder)
        _save_generation_strategy(
            generation_strategy=self.generation_strategy,
            encoder=self.with_db_settings.db_settings.encoder,
        )
コード例 #9
0
ファイル: test_sqa_store.py プロジェクト: stevemandala/Ax
    def testUpdateGenerationStrategy(self):
        generation_strategy = get_generation_strategy()
        save_generation_strategy(generation_strategy=generation_strategy)

        experiment = get_branin_experiment()
        generation_strategy = get_generation_strategy()
        save_experiment(experiment)

        # add generator run, save, reload
        experiment.new_trial(generator_run=generation_strategy.gen(experiment))
        save_generation_strategy(generation_strategy=generation_strategy)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        # add another generator run, save, reload
        experiment.new_trial(generator_run=generation_strategy.gen(
            experiment, data=get_branin_data()))
        save_generation_strategy(generation_strategy=generation_strategy)
        save_experiment(experiment)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, loaded_generation_strategy)

        # make sure that we can update the experiment too
        experiment.description = "foobar"
        save_experiment(experiment)
        loaded_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, loaded_generation_strategy)
        self.assertEqual(generation_strategy._experiment.description,
                         experiment.description)
        self.assertEqual(
            generation_strategy._experiment.description,
            loaded_generation_strategy._experiment.description,
        )
コード例 #10
0
    def testEncodeDecodeGenerationStrategy(self):
        # Cannot load generation strategy before it has been saved
        with self.assertRaises(ValueError):
            load_generation_strategy_by_id(gs_id=0)

        # Check that we can encode and decode the generation strategy *before*
        # it has generated some trials and been updated with some data.
        generation_strategy = get_generation_strategy()
        # Check that we can save a generation strategy without an experiment
        # attached.
        save_generation_strategy(generation_strategy=generation_strategy)
        # Also try restoring this generation strategy by its ID in the DB.
        new_generation_strategy = load_generation_strategy_by_id(
            gs_id=generation_strategy._db_id
        )
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsNone(generation_strategy._experiment)

        # Cannot load generation strategy before it has been saved
        experiment = get_branin_experiment()
        save_experiment(experiment)
        with self.assertRaises(ValueError):
            load_generation_strategy_by_experiment_name(experiment_name=experiment.name)

        # Check that we can encode and decode the generation strategy *after*
        # it has generated some trials and been updated with some data.
        generation_strategy = new_generation_strategy
        experiment.new_trial(generation_strategy.gen(experiment=experiment))
        experiment.new_trial(
            generation_strategy.gen(experiment, data=get_branin_data())
        )
        save_generation_strategy(generation_strategy=generation_strategy)
        save_experiment(experiment)
        # Try restoring the generation strategy using the experiment its
        # attached to.
        new_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name
        )
        # `_seen_trial_indices_by_status` attribute of a GS is not saved in DB,
        # so it will be None in the restored version of the GS.
        # Hackily removing it from the original GS to check equality.
        generation_strategy._seen_trial_indices_by_status = None
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        self.assertIsInstance(new_generation_strategy.model, ModelBridge)
        self.assertEqual(len(new_generation_strategy._generator_runs), 2)
        self.assertEqual(new_generation_strategy._experiment._name, experiment._name)
コード例 #11
0
    def testEncodeDecodeGenerationStrategy(self):
        # Cannot load generation strategy before it has been saved
        with self.assertRaises(ValueError):
            load_generation_strategy_by_id(gs_id=0)

        # Check that we can encode and decode the generation strategy *before*
        # it has generated some trials and been updated with some data.
        generation_strategy = get_generation_strategy()
        # Check that we can save a generation strategy without an experiment
        # attached.
        save_generation_strategy(generation_strategy=generation_strategy)
        # Also try restoring this generation strategy by its ID in the DB.
        new_generation_strategy = load_generation_strategy_by_id(
            gs_id=generation_strategy._db_id)
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsNone(generation_strategy._experiment)
        self.assertEqual(len(generation_strategy._generated), 0)
        self.assertEqual(len(generation_strategy._observed), 0)

        # Cannot load generation strategy before it has been saved
        experiment = get_branin_experiment()
        save_experiment(experiment)
        with self.assertRaises(ValueError):
            load_generation_strategy_by_experiment_name(
                experiment_name=experiment.name)

        # Check that we can encode and decode the generation strategy *after*
        # it has generated some trials and been updated with some data.
        generation_strategy = new_generation_strategy
        experiment.new_trial(generator_run=generation_strategy.gen(experiment))
        experiment.new_trial(
            generation_strategy.gen(experiment, new_data=get_branin_data()))
        self.assertGreater(len(generation_strategy._generated), 0)
        self.assertGreater(len(generation_strategy._observed), 0)
        save_generation_strategy(generation_strategy=generation_strategy)
        save_experiment(experiment)
        # Try restoring the generation strategy using the experiment its
        # attached to.
        new_generation_strategy = load_generation_strategy_by_experiment_name(
            experiment_name=experiment.name)
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        self.assertIsInstance(new_generation_strategy.model, ModelBridge)
        self.assertEqual(len(new_generation_strategy._generator_runs), 2)
        self.assertEqual(new_generation_strategy._experiment._name,
                         experiment._name)
コード例 #12
0
ファイル: test_json_store.py プロジェクト: linusec/Ax
    def testDecodeGenerationStrategy(self):
        generation_strategy = get_generation_strategy()
        experiment = get_branin_experiment()
        gs_json = object_to_json(generation_strategy)
        new_generation_strategy = generation_strategy_from_json(gs_json)
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertGreater(len(new_generation_strategy._steps), 0)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        # Model has not yet been initialized on this GS since it hasn't generated
        # anything yet.
        self.assertIsNone(new_generation_strategy.model)

        # Check that we can encode and decode the generation strategy after
        # it has generated some trials.
        generation_strategy = new_generation_strategy
        experiment.new_trial(generator_run=generation_strategy.gen(experiment))
        gs_json = object_to_json(generation_strategy)
        new_generation_strategy = generation_strategy_from_json(gs_json)
        # `_seen_trial_indices_by_status` attribute of a GS is not saved in DB,
        # so it will be None in the restored version of the GS.
        # Hackily removing it from the original GS to check equality.
        generation_strategy._seen_trial_indices_by_status = None
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        # Since this GS has now generated one generator run, model should have
        # been initialized and restored when decoding from JSON.
        self.assertIsInstance(new_generation_strategy.model, ModelBridge)

        # Check that we can encode and decode the generation strategy after
        # it has generated some trials and been updated with some data.
        generation_strategy = new_generation_strategy
        experiment.new_trial(
            generation_strategy.gen(experiment, data=get_branin_data()))
        gs_json = object_to_json(generation_strategy)
        new_generation_strategy = generation_strategy_from_json(gs_json)
        # `_seen_trial_indices_by_status` attribute of a GS is not saved in DB,
        # so it will be None in the restored version of the GS.
        # Hackily removing it from the original GS to check equality.
        generation_strategy._seen_trial_indices_by_status = None
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        self.assertIsInstance(new_generation_strategy.model, ModelBridge)
コード例 #13
0
ファイル: test_report_utils.py プロジェクト: proteanblank/Ax
 def test_get_standard_plots(self):
     exp = get_branin_experiment()
     self.assertEqual(
         len(
             get_standard_plots(
                 experiment=exp, model=get_generation_strategy().model
             )
         ),
         0,
     )
     exp = get_branin_experiment(with_batch=True, minimize=True)
     exp.trials[0].run()
     gs = choose_generation_strategy(search_space=exp.search_space)
     gs._model = Models.BOTORCH(
         experiment=exp,
         data=exp.fetch_data(),
     )
     plots = get_standard_plots(experiment=exp, model=gs.model)
     self.assertEqual(len(plots), 3)
     self.assertTrue(all(isinstance(plot, go.Figure) for plot in plots))
コード例 #14
0
ファイル: test_report_utils.py プロジェクト: Balandat/Ax
    def test_get_standard_plots(self):
        exp = get_branin_experiment()
        self.assertEqual(
            len(
                get_standard_plots(experiment=exp,
                                   model=get_generation_strategy().model)),
            0,
        )
        exp = get_branin_experiment(with_batch=True, minimize=True)
        exp.trials[0].run()
        plots = get_standard_plots(
            experiment=exp,
            model=Models.BOTORCH(experiment=exp, data=exp.fetch_data()),
        )
        self.assertEqual(len(plots), 6)
        self.assertTrue(all(isinstance(plot, go.Figure) for plot in plots))
        exp = get_branin_experiment_with_multi_objective(with_batch=True)
        exp.optimization_config.objective.objectives[0].minimize = False
        exp.optimization_config.objective.objectives[1].minimize = True
        exp.optimization_config._objective_thresholds = [
            ObjectiveThreshold(metric=exp.metrics["branin_a"],
                               op=ComparisonOp.GEQ,
                               bound=-100.0),
            ObjectiveThreshold(metric=exp.metrics["branin_b"],
                               op=ComparisonOp.LEQ,
                               bound=100.0),
        ]
        exp.trials[0].run()
        plots = get_standard_plots(experiment=exp,
                                   model=Models.MOO(experiment=exp,
                                                    data=exp.fetch_data()))
        self.assertEqual(len(plots), 7)

        # All plots are successfully created when objective thresholds are absent
        exp.optimization_config._objective_thresholds = []
        plots = get_standard_plots(experiment=exp,
                                   model=Models.MOO(experiment=exp,
                                                    data=exp.fetch_data()))
        self.assertEqual(len(plots), 7)

        exp = get_branin_experiment_with_timestamp_map_metric(
            with_status_quo=True)
        exp.new_trial().add_arm(exp.status_quo)
        exp.trials[0].run()
        exp.new_trial(generator_run=Models.SOBOL(
            search_space=exp.search_space).gen(n=1))
        exp.trials[1].run()
        plots = get_standard_plots(
            experiment=exp,
            model=Models.BOTORCH(experiment=exp, data=exp.fetch_data()),
            true_objective_metric_name="branin",
        )

        self.assertEqual(len(plots), 9)
        self.assertTrue(all(isinstance(plot, go.Figure) for plot in plots))
        self.assertIn(
            "Objective branin_map vs. True Objective Metric branin",
            [p.layout.title.text for p in plots],
        )

        with self.assertRaisesRegex(
                ValueError, "Please add a valid true_objective_metric_name"):
            plots = get_standard_plots(
                experiment=exp,
                model=Models.BOTORCH(experiment=exp, data=exp.fetch_data()),
                true_objective_metric_name="not_present",
            )
コード例 #15
0
ファイル: test_json_store.py プロジェクト: Balandat/Ax
    def testDecodeGenerationStrategy(self):
        generation_strategy = get_generation_strategy()
        experiment = get_branin_experiment()
        gs_json = object_to_json(
            generation_strategy,
            encoder_registry=DEPRECATED_ENCODER_REGISTRY,
            class_encoder_registry=DEPRECATED_CLASS_ENCODER_REGISTRY,
        )
        new_generation_strategy = generation_strategy_from_json(
            gs_json,
            decoder_registry=DEPRECATED_DECODER_REGISTRY,
            class_decoder_registry=DEPRECATED_CLASS_DECODER_REGISTRY,
        )
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertGreater(len(new_generation_strategy._steps), 0)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        # Model has not yet been initialized on this GS since it hasn't generated
        # anything yet.
        self.assertIsNone(new_generation_strategy.model)

        # Check that we can encode and decode the generation strategy after
        # it has generated some generator runs. Since we now need to `gen`,
        # we remove the fake callable kwarg we added, since model does not
        # expect it.
        generation_strategy = get_generation_strategy(with_callable_model_kwarg=False)
        gr = generation_strategy.gen(experiment)
        gs_json = object_to_json(
            generation_strategy,
            encoder_registry=DEPRECATED_ENCODER_REGISTRY,
            class_encoder_registry=DEPRECATED_CLASS_ENCODER_REGISTRY,
        )
        new_generation_strategy = generation_strategy_from_json(
            gs_json,
            decoder_registry=DEPRECATED_DECODER_REGISTRY,
            class_decoder_registry=DEPRECATED_CLASS_DECODER_REGISTRY,
        )
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        # Since this GS has now generated one generator run, model should have
        # been initialized and restored when decoding from JSON.
        self.assertIsInstance(new_generation_strategy.model, ModelBridge)

        # Check that we can encode and decode the generation strategy after
        # it has generated some trials and been updated with some data.
        generation_strategy = new_generation_strategy
        experiment.new_trial(gr)  # Add previously generated GR as trial.
        # Make generation strategy aware of the trial's data via `gen`.
        generation_strategy.gen(experiment, data=get_branin_data())
        gs_json = object_to_json(
            generation_strategy,
            encoder_registry=DEPRECATED_ENCODER_REGISTRY,
            class_encoder_registry=DEPRECATED_CLASS_ENCODER_REGISTRY,
        )
        new_generation_strategy = generation_strategy_from_json(
            gs_json,
            decoder_registry=DEPRECATED_DECODER_REGISTRY,
            class_decoder_registry=DEPRECATED_CLASS_DECODER_REGISTRY,
        )
        self.assertEqual(generation_strategy, new_generation_strategy)
        self.assertIsInstance(new_generation_strategy._steps[0].model, Models)
        self.assertIsInstance(new_generation_strategy.model, ModelBridge)