def test_rotate_subscription_key(self, resource_group, location, text_analytics_account, text_analytics_account_key): credential = AzureKeyCredential(text_analytics_account_key) client = TextAnalyticsClient(text_analytics_account, credential) docs = [{ "id": "1", "text": "I will go to the park." }, { "id": "2", "text": "I did not like the hotel we stayed at." }, { "id": "3", "text": "The restaurant had really good food." }] response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result() self.assertIsNotNone(response) credential.update("xxx") # Make authentication fail with self.assertRaises(ClientAuthenticationError): response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result() credential.update( text_analytics_account_key) # Authenticate successfully again response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result() self.assertIsNotNone(response)
def test_user_agent(self, client): def callback(resp): self.assertIn( "azsdk-python-ai-textanalytics/{} Python/{} ({})".format( VERSION, platform.python_version(), platform.platform()), resp.http_request.headers["User-Agent"]) docs = [{ "id": "1", "text": "I will go to the park." }, { "id": "2", "text": "I did not like the hotel we stayed at." }, { "id": "3", "text": "The restaurant had really good food." }] poller = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ) self.assertIn( "azsdk-python-ai-textanalytics/{} Python/{} ({})".format( VERSION, platform.python_version(), platform.platform()), poller._polling_method._initial_response. http_request.headers["User-Agent"]) poller.result( ) # need to call this before tearDown runs even though we don't need the response for the test.
def test_passing_only_string_entities_task(self, client): docs = [ u"Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.", u"Microsoft fue fundado por Bill Gates y Paul Allen el 4 de abril de 1975.", u"Microsoft wurde am 4. April 1975 von Bill Gates und Paul Allen gegründet." ] response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], polling_interval=self._interval(), ).result() results_pages = list(response) self.assertEqual(len(results_pages), 1) task_results = results_pages[0].entities_recognition_results self.assertEqual(len(task_results), 1) results = task_results[0].results self.assertEqual(len(results), 3) self.assertEqual(len(results[0].entities), 4) self.assertIsNotNone(results[0].id) for entity in results[0].entities: self.assertIsNotNone(entity.text) self.assertIsNotNone(entity.category) self.assertIsNotNone(entity.offset) self.assertIsNotNone(entity.confidence_score)
def test_invalid_language_hint_docs(self, client): response = list( client.begin_analyze( [{ "id": "1", "language": "notalanguage", "text": "This should fail because we're passing in an invalid language hint" }], entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result()) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] for task_type in task_types: tasks = getattr( response[0], task_type) # only expecting a single page of results here self.assertEqual(len(tasks), 1) for r in tasks[0].results: self.assertTrue(r.is_error)
def test_whole_batch_dont_use_language_hint(self, client): docs = [ u"This was the best day of my life.", u"I did not like the hotel we stayed at. It was too expensive.", u"The restaurant was not as good as I hoped." ] response = list( client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], language="", polling_interval=self._interval(), ).result()) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] for task_type in task_types: task_results = getattr(response[0], task_type) self.assertEqual(len(task_results), 1) results = task_results[0].results for r in results: self.assertFalse(r.is_error)
def test_client_passed_default_language_hint(self, client): docs = [{ "id": "1", "text": "I will go to the park." }, { "id": "2", "text": "I did not like the hotel we stayed at." }, { "id": "3", "text": "The restaurant had really good food." }] response = list( client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result()) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] for task_type in task_types: tasks = getattr( response[0], task_type) # only expecting a single page of results here self.assertEqual(len(tasks), 1) self.assertEqual(len(tasks[0].results), 3) for r in tasks[0].results: self.assertFalse(r.is_error)
def test_output_same_order_as_input_multiple_tasks(self, client): docs = [ TextDocumentInput(id="1", text="one"), TextDocumentInput(id="2", text="two"), TextDocumentInput(id="3", text="three"), TextDocumentInput(id="4", text="four"), TextDocumentInput(id="5", text="five") ] response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result() results_pages = list(response) self.assertEqual(len(results_pages), 1) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] for task_type in task_types: task_results = getattr(results_pages[0], task_type) self.assertEqual(len(task_results), 1) results = task_results[0].results self.assertEqual(len(results), 5) for idx, doc in enumerate(results): self.assertEqual(str(idx + 1), doc.id)
def test_whole_batch_language_hint_and_obj_per_item_hints(self, client): docs = [ TextDocumentInput(id="1", text="I should take my cat to the veterinarian.", language="en"), TextDocumentInput(id="2", text="Este es un document escrito en Español.", language="en"), TextDocumentInput(id="3", text="猫は幸せ"), ] response = list( client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], language="en", polling_interval=self._interval(), ).result()) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] for task_type in task_types: task_results = getattr(response[0], task_type) self.assertEqual(len(task_results), 1) results = task_results[0].results for r in results: self.assertFalse(r.is_error)
def test_empty_document_failure(self, client): docs = [{"id": "1", "text": ""}] with self.assertRaises(HttpResponseError): response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], polling_interval=self._interval(), )
def test_bad_credentials(self, client): with self.assertRaises(ClientAuthenticationError): response = client.begin_analyze( ["This is written in English."], entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), )
def test_missing_input_records_error(self, client): docs = [] with pytest.raises(ValueError) as excinfo: client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ) assert "Input documents can not be empty or None" in str(excinfo.value)
def test_not_passing_list_for_docs(self, client): docs = {"id": "1", "text": "hello world"} with pytest.raises(TypeError) as excinfo: client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ) assert "Input documents cannot be a dict" in str(excinfo.value)
def test_bad_document_input(self, client): docs = "This is the wrong type" with self.assertRaises(TypeError): response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), )
def test_pass_cls(self, client): def callback(pipeline_response, deserialized, _): return "cls result" res = client.begin_analyze( documents=["Test passing cls to endpoint"], entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], cls=callback, polling_interval=self._interval(), ).result() assert res == "cls result"
def test_too_many_documents(self, client): docs = list(itertools.repeat( "input document", 26)) # Maximum number of documents per request is 25 with pytest.raises(HttpResponseError) as excinfo: client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ) assert excinfo.value.status_code == 400
def test_all_successful_passing_dict_entities_task(self, client): docs = [{ "id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975." }, { "id": "2", "language": "es", "text": "Microsoft fue fundado por Bill Gates y Paul Allen el 4 de abril de 1975." }, { "id": "3", "language": "de", "text": "Microsoft wurde am 4. April 1975 von Bill Gates und Paul Allen gegründet." }] response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], show_stats=True, polling_interval=self._interval(), ).result() results_pages = list(response) self.assertEqual(len(results_pages), 1) task_results = results_pages[0].entities_recognition_results self.assertEqual(len(task_results), 1) results = task_results[0].results self.assertEqual(len(results), 3) for doc in results: self.assertEqual(len(doc.entities), 4) self.assertIsNotNone(doc.id) # self.assertIsNotNone(doc.statistics) for entity in doc.entities: self.assertIsNotNone(entity.text) self.assertIsNotNone(entity.category) self.assertIsNotNone(entity.offset) self.assertIsNotNone(entity.confidence_score)
def test_bad_model_version_error_single_task( self, client): # TODO: verify behavior of service docs = [{ "id": "1", "language": "english", "text": "I did not like the hotel we stayed at." }] with self.assertRaises(HttpResponseError): result = client.begin_analyze( docs, entities_recognition_tasks=[ EntitiesRecognitionTask(model_version="bad") ], polling_interval=self._interval(), ).result()
def test_show_stats_and_model_version_multiple_tasks(self, client): docs = [{ "id": "56", "text": ":)" }, { "id": "0", "text": ":(" }, { "id": "19", "text": ":P" }, { "id": "1", "text": ":D" }] response = client.begin_analyze( docs, entities_recognition_tasks=[ EntitiesRecognitionTask(model_version="latest") ], key_phrase_extraction_tasks=[ KeyPhraseExtractionTask(model_version="latest") ], pii_entities_recognition_tasks=[ PiiEntitiesRecognitionTask(model_version="latest") ], show_stats=True, polling_interval=self._interval(), ).result() results_pages = list(response) self.assertEqual(len(results_pages), 1) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] for task_type in task_types: task_results = getattr(results_pages[0], task_type) self.assertEqual(len(task_results), 1) results = task_results[0].results self.assertEqual(len(results), len(docs))
def test_out_of_order_ids_multiple_tasks(self, client): docs = [{ "id": "56", "text": ":)" }, { "id": "0", "text": ":(" }, { "id": "19", "text": ":P" }, { "id": "1", "text": ":D" }] response = client.begin_analyze( docs, entities_recognition_tasks=[ EntitiesRecognitionTask(model_version="bad") ], # at this moment this should cause all documents to be errors, which isn't correct behavior but I'm using it here to test document ordering with errors. :) key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result() results_pages = list(response) self.assertEqual(len(results_pages), 1) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] in_order = ["56", "0", "19", "1"] for task_type in task_types: task_results = getattr(results_pages[0], task_type) self.assertEqual(len(task_results), 1) results = task_results[0].results self.assertEqual(len(results), len(docs)) for idx, resp in enumerate(results): self.assertEqual(resp.id, in_order[idx])
def test_duplicate_ids_error(self, client): # TODO: verify behavior of service # Duplicate Ids docs = [{ "id": "1", "text": "hello world" }, { "id": "1", "text": "I did not like the hotel we stayed at." }] with self.assertRaises(HttpResponseError): result = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result()
def test_all_successful_passing_text_document_input_entities_task( self, client): docs = [ TextDocumentInput( id="1", text= "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.", language="en"), TextDocumentInput( id="2", text= "Microsoft fue fundado por Bill Gates y Paul Allen el 4 de abril de 1975.", language="es"), TextDocumentInput( id="3", text= "Microsoft wurde am 4. April 1975 von Bill Gates und Paul Allen gegründet.", language="de") ] response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], polling_interval=self._interval(), ).result() results_pages = list(response) self.assertEqual(len(results_pages), 1) task_results = results_pages[0].entities_recognition_results self.assertEqual(len(task_results), 1) results = task_results[0].results self.assertEqual(len(results), 3) for doc in results: self.assertEqual(len(doc.entities), 4) self.assertIsNotNone(doc.id) for entity in doc.entities: self.assertIsNotNone(entity.text) self.assertIsNotNone(entity.category) self.assertIsNotNone(entity.offset) self.assertIsNotNone(entity.confidence_score)
def test_mixing_inputs(self, client): docs = [ { "id": "1", "text": "Microsoft was founded by Bill Gates and Paul Allen." }, TextDocumentInput( id="2", text= "I did not like the hotel we stayed at. It was too expensive." ), u"You cannot mix string input with the above inputs" ] with self.assertRaises(TypeError): response = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], polling_interval=self._interval(), ).result()
def test_bad_model_version_error_multiple_tasks( self, client): # TODO: verify behavior of service docs = [{ "id": "1", "language": "english", "text": "I did not like the hotel we stayed at." }] response = client.begin_analyze( docs, entities_recognition_tasks=[ EntitiesRecognitionTask(model_version="latest") ], key_phrase_extraction_tasks=[ KeyPhraseExtractionTask(model_version="bad") ], pii_entities_recognition_tasks=[ PiiEntitiesRecognitionTask(model_version="bad") ], polling_interval=self._interval(), ).result() results_pages = list(response) self.assertEqual(len(results_pages), 1) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] for task_type in task_types: tasks = getattr( results_pages[0], task_type) # only expecting a single page of results here self.assertEqual(len(tasks), 1) for r in tasks[0].results: self.assertTrue( r.is_error ) # This is not the optimal way to represent this failure. We are discussing a solution with the service team.
def test_multiple_pages_of_results_returned_successfully(self, client): single_doc = "hello world" docs = [{ "id": str(idx), "text": val } for (idx, val) in enumerate(list(itertools.repeat(single_doc, 25))) ] # max number of documents is 25 result = client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], show_stats=True, polling_interval=self._interval(), ).result() pages = list(result) self.assertEqual(len(pages), 2) # default page size is 20 # self.assertIsNotNone(result.statistics) # statistics not working at the moment, but a bug has been filed on the service to correct this. task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] expected_results_per_page = [20, 5] for idx, page in enumerate(pages): for task_type in task_types: task_results = getattr(page, task_type) self.assertEqual(len(task_results), 1) results = task_results[0].results self.assertEqual(len(results), expected_results_per_page[idx]) for doc in results: self.assertFalse(doc.is_error)
def test_whole_batch_language_hint_and_dict_per_item_hints(self, client): docs = [{ "id": "1", "language": "en", "text": "I will go to the park." }, { "id": "2", "language": "en", "text": "I did not like the hotel we stayed at." }, { "id": "3", "text": "The restaurant had really good food." }] response = list( client.begin_analyze( docs, entities_recognition_tasks=[EntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], language="en", polling_interval=self._interval(), ).result()) task_types = [ "entities_recognition_results", "key_phrase_extraction_results", "pii_entities_recognition_results" ] for task_type in task_types: task_results = getattr(response[0], task_type) self.assertEqual(len(task_results), 1) results = task_results[0].results for r in results: self.assertFalse(r.is_error)
async def analyze_async(self): # [START analyze_async] from azure.core.credentials import AzureKeyCredential from azure.ai.textanalytics.aio import TextAnalyticsClient from azure.ai.textanalytics import EntitiesRecognitionTask, \ PiiEntitiesRecognitionTask, \ KeyPhraseExtractionTask endpoint = os.environ["AZURE_TEXT_ANALYTICS_ENDPOINT"] key = os.environ["AZURE_TEXT_ANALYTICS_KEY"] text_analytics_client = TextAnalyticsClient( endpoint=endpoint, credential=AzureKeyCredential(key), ) documents = [ "We went to Contoso Steakhouse located at midtown NYC last week for a dinner party, and we adore the spot! \ They provide marvelous food and they have a great menu. The chief cook happens to be the owner (I think his name is John Doe) \ and he is super nice, coming out of the kitchen and greeted us all. We enjoyed very much dining in the place! \ The Sirloin steak I ordered was tender and juicy, and the place was impeccably clean. You can even pre-order from their \ online menu at www.contososteakhouse.com, call 312-555-0176 or send email to [email protected]! \ The only complaint I have is the food didn't come fast enough. Overall I highly recommend it!" ] async with text_analytics_client: poller = await text_analytics_client.begin_analyze( documents, display_name="Sample Text Analysis", entities_recognition_tasks=[EntitiesRecognitionTask()], pii_entities_recognition_tasks=[PiiEntitiesRecognitionTask()], key_phrase_extraction_tasks=[KeyPhraseExtractionTask()]) result = await poller.result() async for page in result: for task in page.entities_recognition_results: print("Results of Entities Recognition task:") docs = [doc for doc in task.results if not doc.is_error] for idx, doc in enumerate(docs): print("\nDocument text: {}".format(documents[idx])) for entity in doc.entities: print("Entity: {}".format(entity.text)) print("...Category: {}".format(entity.category)) print("...Confidence Score: {}".format( entity.confidence_score)) print("...Offset: {}".format(entity.offset)) print("------------------------------------------") for task in page.pii_entities_recognition_results: print("Results of PII Entities Recognition task:") docs = [doc for doc in task.results if not doc.is_error] for idx, doc in enumerate(docs): print("Document text: {}".format(documents[idx])) for entity in doc.entities: print("Entity: {}".format(entity.text)) print("Category: {}".format(entity.category)) print("Confidence Score: {}\n".format( entity.confidence_score)) print("------------------------------------------") for task in page.key_phrase_extraction_results: print("Results of Key Phrase Extraction task:") docs = [doc for doc in task.results if not doc.is_error] for idx, doc in enumerate(docs): print("Document text: {}\n".format(documents[idx])) print("Key Phrases: {}\n".format(doc.key_phrases)) print("------------------------------------------")