コード例 #1
0
ファイル: utils.py プロジェクト: Azure/azure-kusto-python
        def ingest_from_blob(cls,
                             ingest_client: QueuedIngestClient,
                             database_name: str,
                             table_name: str,
                             blob_url: str,
                             data_format: DataFormat,
                             mapping_name: str = None) -> None:
            """
            Ingest Data from a Blob.
            :param ingest_client: Client to ingest data
            :param database_name: DB name
            :param table_name: Table name
            :param blob_url: Blob Uri
            :param data_format: Given data format
            :param mapping_name: Desired mapping name
            """
            ingestion_properties = cls.create_ingestion_properties(
                database_name, table_name, data_format, mapping_name)

            # Tip 1: For optimal ingestion batching and performance,specify the uncompressed data size in the file descriptor instead of the default below of 0.
            # Otherwise, the service will determine the file size, requiring an additional s2s call, and may not be accurate for compressed files.
            # Tip 2: To correlate between ingestion operations in your applications and Kusto, set the source ID and log it somewhere
            blob_descriptor = BlobDescriptor(blob_url,
                                             size=0,
                                             source_id=str(uuid.uuid4()))
            ingest_client.ingest_from_blob(
                blob_descriptor, ingestion_properties=ingestion_properties)
コード例 #2
0
    # ingestion_mapping_reference="{json_mapping_that_already_exists_on_table}"
    # ingestion_mapping_type=IngestionMappingType.JSON
)

# ingest from file
file_descriptor = FileDescriptor(
    "{filename}.csv", 3333)  # 3333 is the raw size of the data in bytes.
client.ingest_from_file(file_descriptor, ingestion_properties=ingestion_props)
client.ingest_from_file("{filename}.csv", ingestion_properties=ingestion_props)

# ingest from blob
blob_descriptor = BlobDescriptor(
    "https://{path_to_blob}.csv.gz?sp=rl&st=2020-05-20T13:38:37Z&se=2020-05-21T13:38:37Z&sv=2019-10-10&sr=c&sig=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
    10,
)  # 10 is the raw size of the data in bytes.
client.ingest_from_blob(blob_descriptor, ingestion_properties=ingestion_props)

# ingest from dataframe
import pandas

fields = ["id", "name", "value"]
rows = [[1, "abc", 15.3], [2, "cde", 99.9]]

df = pandas.DataFrame(data=rows, columns=fields)

client.ingest_from_dataframe(df, ingestion_properties=ingestion_props)

# ingest a whole folder.
import os

path = "folder/path"