def run(self) -> Tuple[Optional[DeepLearningConfig], Optional[Run]]: """ The main entry point for training and testing models from the commandline. This chooses a model to train via a commandline argument, runs training or testing, and writes all required info to disk and logs. :return: If submitting to AzureML, returns the model configuration that was used for training, including commandline overrides applied (if any). """ # Usually, when we set logging to DEBUG, we want diagnostics about the model # build itself, but not the tons of debug information that AzureML submissions create. logging_to_stdout(logging.INFO if is_local_rank_zero() else "ERROR") initialize_rpdb() user_agent.append(azure_util.INNEREYE_SDK_NAME, azure_util.INNEREYE_SDK_VERSION) self.parse_and_load_model() if self.lightning_container.perform_cross_validation: if self.model_config is None: raise NotImplementedError("Cross validation for LightingContainer models is not yet supported.") # force hyperdrive usage if performing cross validation self.azure_config.hyperdrive = True run_object: Optional[Run] = None if self.azure_config.azureml: run_object = self.submit_to_azureml() else: self.run_in_situ() if self.model_config is None: return self.lightning_container, run_object return self.model_config, run_object
def __append_telemetry(self): if not self.telemetry_set: self.telemetry_set = True try: from azureml._base_sdk_common.user_agent import append append("AzureMLCluster-DASK", "0.1") except ImportError: pass
import threading import dask import pathlib from distributed.utils import ( LoopRunner, log_errors, format_bytes, ) from tornado.ioloop import PeriodicCallback logger = logging.getLogger(__name__) try: from azureml._base_sdk_common.user_agent import append append('AzureMLCluster-DASK', '0.1') except: pass class AzureMLCluster(Cluster): """ Deploy a Dask cluster using Azure ML This creates a dask scheduler and workers on an Azure ML Compute Target. Parameters ---------- workspace: azureml.core.Workspace (required) Azure ML Workspace - see https://aka.ms/azureml/workspace compute_target: azureml.core.ComputeTarget (required) Azure ML Compute Target - see https://aka.ms/azureml/computetarget environment_definition: azureml.core.Environment (required) Azure ML Environment - see https://aka.ms/azureml/environments
"Model", "PrivateEndPoint", "PrivateEndPointConfig", "Run", "RunConfiguration", "ScriptRun", "ScriptRunConfig", "Webservice", "Workspace", "attach_legacy_compute_target", "get_run", "is_compute_target_prepared", "prepare_compute_target", "remove_legacy_compute_target", "LinkedService", "SynapseWorkspaceLinkedServiceConfiguration" ] user_agent.append("azureml-sdk-core", __version__) # Appending the Arcadia environment variable to user agent string to indicate request origin. if _ArcadiaAuthentication._is_arcadia_environment(): user_agent.append(_ArcadiaAuthentication._ARCADIA_ENVIRONMENT_VARIABLE_VALUE) RUN_TYPE_PROVIDERS_ENTRYPOINT_KEY = "azureml_run_type_providers" for entrypoint in pkg_resources.iter_entry_points(RUN_TYPE_PROVIDERS_ENTRYPOINT_KEY): try: Run.add_type_provider(entrypoint.name, entrypoint.load()) except Exception as e: module_logger.warning("Failure while loading {}. Failed to load entrypoint {} with exception {}.".format( RUN_TYPE_PROVIDERS_ENTRYPOINT_KEY, entrypoint, e))