コード例 #1
0
ファイル: inverse_iteration.py プロジェクト: hbldh/b2ac
def inverse_iteration_for_eigenvector_int(A, eigenvalue):
    """Performs a series of inverse iteration steps with a known
    eigenvalue to produce its eigenvector.

    :param A: The 3x3 matrix to which the eigenvalue belongs.
    :type A: :py:class:`numpy.ndarray`
    :param eigenvalue: One approximate eigenvalue of the matrix A.
    :type eigenvalue: int
    :return: The eigenvector of this matrix and eigenvalue combination.
    :rtype: :py:class:`numpy.ndarray`

    """
    A = np.array(A, 'int64')

    # Subtract the eigenvalue from the diagonal entries of the matrix.
    for k in xrange(A.shape[0]):
        A[k, k] -= eigenvalue
    A, scale = fp.scale_64bit_matrix(A)

    # Obtain the inverse of the matrix.
    adj_A = mo.inverse_3by3_int64(A.flatten(), False)
    eigenvector = adj_A.reshape((3, 3)).sum(1)
    eigenvector, scale = fp.scale_64bit_vector(eigenvector)

    e_norm = int(np.sqrt((eigenvector ** 2).sum()))
    if (eigenvector[0] < 0) and (eigenvector[2] < 0):
        eigenvector = -eigenvector
    return eigenvector, e_norm
コード例 #2
0
ファイル: inverse_iteration.py プロジェクト: vcchy/b2ac
def inverse_iteration_for_eigenvector_int(A, eigenvalue):
    """Performs a series of inverse iteration steps with a known
    eigenvalue to produce its eigenvector.

    :param A: The 3x3 matrix to which the eigenvalue belongs.
    :type A: :py:class:`numpy.ndarray`
    :param eigenvalue: One approximate eigenvalue of the matrix A.
    :type eigenvalue: int
    :return: The eigenvector of this matrix and eigenvalue combination.
    :rtype: :py:class:`numpy.ndarray`

    """
    A = np.array(A, 'int64')

    # Subtract the eigenvalue from the diagonal entries of the matrix.
    for k in xrange(A.shape[0]):
        A[k, k] -= eigenvalue
    A, scale = fp.scale_64bit_matrix(A)

    # Obtain the inverse of the matrix.
    adj_A = mo.inverse_3by3_int64(A.flatten(), False)
    eigenvector = adj_A.reshape((3, 3)).sum(1)
    eigenvector, scale = fp.scale_64bit_vector(eigenvector)

    e_norm = int(np.sqrt((eigenvector**2).sum()))
    if (eigenvector[0] < 0) and (eigenvector[2] < 0):
        eigenvector = -eigenvector
    return eigenvector, e_norm
コード例 #3
0
ファイル: qr_algorithm.py プロジェクト: PolarNick239/b2ac
def QR_algorithm_shift_Givens_int(A):
    """The QR algorithm with largest value shift for finding eigenvalues, in integer precision.

    Using Givens rotations for finding RQ.

    :param A: The square matrix to find eigenvalues of.
    :type A: :py:class:`numpy.ndarray`
    :return: The eigenvalues.
    :rtype: list

    """

    A, scale = fp.scale_64bit_matrix(A.copy())

    # First, tridiagonalize the input matrix to a Hessenberg matrix.
    T = ma.convert_to_Hessenberg_Givens_int(A)

    m, n = T.shape
    if n != m:
        raise np.linalg.LinAlgError("Array must be square.")

    convergence_measure = []
    eigenvalues = np.zeros((m, ), dtype='int64')
    m -= 1

    while m > 0:
        # Obtain the shift from the lower right corner of the matrix.
        mu_matrix = np.eye(T.shape[0], dtype='int64') * T[m, m]
        # Perform Givens QR step (which returns RQ) on the shifted
        # matrix and then shift it back.
        T = Givens_QR_step_int(T - mu_matrix) + mu_matrix
        # Add convergence information and extract eigenvalue if close enough.
        convergence_measure.append(np.abs(T[m, m - 1]))
        if convergence_measure[-1] <= 1:
            eigenvalues[m] = T[m, m]
            T = T[:m, :m]
            m -= 1

    eigenvalues[0] = T
    return eigenvalues << scale, convergence_measure
コード例 #4
0
ファイル: qr_algorithm.py プロジェクト: vcchy/b2ac
def QR_algorithm_shift_Givens_int(A):
    """The QR algorithm with largest value shift for finding eigenvalues, in integer precision.

    Using Givens rotations for finding RQ.

    :param A: The square matrix to find eigenvalues of.
    :type A: :py:class:`numpy.ndarray`
    :return: The eigenvalues.
    :rtype: list

    """

    A, scale = fp.scale_64bit_matrix(A.copy())

    # First, tridiagonalize the input matrix to a Hessenberg matrix.
    T = ma.convert_to_Hessenberg_Givens_int(A)

    m, n = T.shape
    if n != m:
        raise np.linalg.LinAlgError("Array must be square.")

    convergence_measure = []
    eigenvalues = np.zeros((m, ), dtype='int64')
    m -= 1

    while m > 0:
        # Obtain the shift from the lower right corner of the matrix.
        mu_matrix = np.eye(T.shape[0], dtype='int64') * T[m, m]
        # Perform Givens QR step (which returns RQ) on the shifted
        # matrix and then shift it back.
        T = Givens_QR_step_int(T - mu_matrix) + mu_matrix
        # Add convergence information and extract eigenvalue if close enough.
        convergence_measure.append(np.abs(T[m, m - 1]))
        if convergence_measure[-1] <= 1:
            eigenvalues[m] = T[m, m]
            T = T[:m, :m]
            m -= 1

    eigenvalues[0] = T
    return eigenvalues << scale, convergence_measure