コード例 #1
0
def test_margin(distributions, reduction):
    np.random.seed(1337)
    margin = Margin(reduction=reduction)
    marg = margin(distributions)
    assert np.all(marg == [1, 2, 0]), "Margin is not right {}".format(marg)

    margin = Margin(shuffle_prop=0.9, reduction=reduction)
    marg = margin(distributions)
    assert np.any(marg != [1, 2, 0])
コード例 #2
0
def test_heuristics_reorder_list():
    # we are just testing if given calculated uncertainty measures for chunks of data
    # the `reorder_indices` would make correct decision. Here index 0 has the
    # highest uncertainty chosen but both methods (uncertainties1 and uncertainties2)
    streaming_prediction = [np.array([0.98]), np.array([0.87, 0.68]),
                            np.array([0.96, 0.54])]
    heuristic = BALD()
    ranks = heuristic.reorder_indices(streaming_prediction)
    assert np.all(ranks == [0, 3, 1, 2, 4]), "reorder list for BALD is not right {}".format(ranks)

    heuristic = Variance()
    ranks = heuristic.reorder_indices(streaming_prediction)
    assert np.all(ranks == [0, 3, 1, 2, 4]), "reorder list for Variance is not right {}".format(
        ranks)

    heuristic = Entropy()
    ranks = heuristic.reorder_indices(streaming_prediction)
    assert np.all(ranks == [0, 3, 1, 2, 4]), "reorder list for Entropy is not right {}".format(
        ranks)

    heuristic = Margin()
    ranks = heuristic.reorder_indices(streaming_prediction)
    assert np.all(ranks == [4, 2, 1, 3, 0]), "reorder list for Margin is not right {}".format(ranks)

    heuristic = Certainty()
    ranks = heuristic.reorder_indices(streaming_prediction)
    assert np.all(ranks == [4, 2, 1, 3, 0]), "reorder list for Certainty is not right {}".format(
        ranks)

    heuristic = Random()
    ranks = heuristic.reorder_indices(streaming_prediction)
    assert ranks.size == 5, "reorder list for Random is not right {}".format(
        ranks)