コード例 #1
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None,
               use_bounded_activations=False):
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)

        if depth == depth_in:
            shortcut = utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(inputs, depth, [1, 1], stride=stride,
                                   activation_fn=tf.nn.relu6 if use_bounded_activations else None, scope='shortcut')

        residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1')
        residual = utils.conv2d_same(residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
        residual = slim.conv2d(residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3')

        if use_bounded_activations:
            # Use clip_by_value to simulate bandpass activation.
            residual = tf.clip_by_value(residual, -6.0, 6.0)
            output = tf.nn.relu6(shortcut + residual)
        else:
            output = tf.nn.relu(shortcut + residual)

        return slim.utils.collect_named_outputs(outputs_collections, sc.name, output)
コード例 #2
0
ファイル: ResNet_v1.py プロジェクト: minha12/APF
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=True,
              store_non_strided_activations=False,
              reuse=None,
              scope=None):
    with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with slim.arg_scope(
            [slim.conv2d, bottleneck, utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with (slim.arg_scope([slim.batch_norm], is_training=is_training)
                  if is_training is not None else NoOpScope()):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    net = utils.conv2d_same(net,
                                            64,
                                            7,
                                            stride=2,
                                            scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
                net = utils.stack_blocks_dense(net, blocks, output_stride,
                                               store_non_strided_activations)

                end_points = slim.utils.convert_collection_to_dict(
                    end_points_collection)

                if global_pool:
                    net = tf.reduce_mean(net, [1, 2],
                                         name='pool5',
                                         keep_dims=True)
                    end_points['global_pool'] = net
                if num_classes:
                    net = slim.conv2d(net,
                                      num_classes, [1, 1],
                                      activation_fn=None,
                                      normalizer_fn=None,
                                      scope='logits')
                    end_points[sc.name + '/logits'] = net
                    if spatial_squeeze:
                        net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
                        end_points[sc.name + '/spatial_squeeze'] = net
                    end_points['predictions'] = slim.softmax(
                        net, scope='predictions')
                return net, end_points
コード例 #3
0
ファイル: modifiedResNet_v2.py プロジェクト: minha12/APF
def block(inputs, depth, stride, rate=1, outputs_collections=None, scope=None):
    with tf.variable_scope(scope, 'block_v2', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs, activation_fn=tf.nn.leaky_relu, scope='preact')
        if depth == depth_in:
            shortcut = utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride, normalizer_fn=None, activation_fn=None, scope='shortcut')

        residual = utils.conv2d_same(preact, depth, 3, stride, rate=rate, scope='conv1')
        residual = slim.conv2d(residual, depth, [3, 3], stride=1, normalizer_fn=None, activation_fn=None, scope='conv2')
        # residual = slim.conv2d(residual, depth, [1, 1], stride=1, normalizer_fn=None, activation_fn=None, scope='conv3')

        output = shortcut + residual

        return slim.utils.collect_named_outputs(outputs_collections, sc.name, output)