コード例 #1
0
    def test_logcalc_return_type(self):
        """check if the value returned by the calc_return
        function is of type numpy.float64 when the return type
        is log.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if different return type encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        data_input = functions.invest_dataframe(FILE_NAME)
        start = TEST_START
        end = TEST_END
        out_return = functions.calc_return(data_input, start, end, return_type='log')
        out_type = str(type(out_return))
        if out_type == "<class 'numpy.float64'>" or out_type == "<type 'numpy.float64'>":
            out_bool = 1
        else:
            out_bool = 1
        self.assertEqual(out_bool, 1)
コード例 #2
0
    def test_num_rows_portfolio(self):
        """check if track_portfolio returns a number of records
        equal to the number of unique date_time indices.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if unexpected num_rows encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        stock = functions.invest_dataframe(FILE_NAME)
        bond = functions.invest_dataframe(BOND_FILE_NAME)
        stockshare = TEST_STOCKSHARE
        alloc = [(stock, stockshare), (bond, 1 - stockshare)]
        start = pd.Timestamp(str(BOND_START_YEAR) + '-01-02 00:00:00', tz=None)
        end = pd.Timestamp(str(BOND_END_YEAR) + '-01-03 00:00:00', tz=None)
        x_portfolio = functions.track_portfolio(INITIAL_INV, alloc, QUARTER, start, end)
        rows_to_have = x_portfolio.index.nunique()
        self.assertEqual(len(x_portfolio), rows_to_have)
コード例 #3
0
    def test_date_time_indices(self):
        """check if index is a DateTime index

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if unexpected columns encountered.

        Raises:
            Raises AssertionError: Type not equal
        """
        df_to_test = functions.invest_dataframe(FILE_NAME)
        self.assertEqual(type(df_to_test.index), pd.core.indexes.datetimes.DatetimeIndex)
コード例 #4
0
    def test_calc_risk_return_val(self):
        """verify that the output of the calc_risk function is
        greater than or equal to zero.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if unexpected value encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        data_input = functions.invest_dataframe(FILE_NAME)
        start = TEST_START
        end = TEST_END
        out_return = functions.calc_risk(data_input, start, end)
        self.assertGreaterEqual(out_return, 0)
コード例 #5
0
    def test_exccalc_risk_return_type(self):
        """check if calc_risk function raises an exception
        when risk type is neither proba or stddev.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if unexpected risk_type encountered.

        Raises:
            Raises AssertionError if Exception not raised
        """
        data_input = functions.invest_dataframe(FILE_NAME)
        start = TEST_START
        end = TEST_END
        with self.assertRaises(Exception):
            functions.calc_risk(data_input, start, end, risk_type='null')
コード例 #6
0
    def test_return_list_type(self):
        """check if the output of the invest_dataframe function
        is a numpy array (numpy.ndarray).

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if unexpected return type encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        data_input = functions.invest_dataframe(FILE_NAME)
        start = TEST_START
        end = TEST_END
        out_return = functions.return_list(data_input, start, end)
        self.assertEqual(np.ndarray, type(out_return))
コード例 #7
0
    def test_calc_return_type(self):
        """check if the value returned by the calc_return
        function is of type float.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if different return type encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        data_input = functions.invest_dataframe(FILE_NAME)
        start = TEST_START
        end = TEST_END
        out_return = functions.calc_return(data_input, start, end, return_type='percent')
        self.assertEqual(float, type(out_return))
コード例 #8
0
    def test_num_rows(self):
        """check if number of records is as expected.
        Since that each date occurs only once, number
        of records should be the number of unique date_time
        indices.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error.

        Raises:
            Raises AssertionError Values not equal
        """
        df_to_test = functions.invest_dataframe(FILE_NAME)
        rows_to_have = df_to_test.index.nunique()
        self.assertEqual(len(df_to_test), rows_to_have)
コード例 #9
0
    def test_return_rate(self):
        """check that calc_return gives a valid return rate
        between 0 and 100, when the return_type is percent.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else raises
            an error if unexpected return value encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        df_t = functions.invest_dataframe(FILE_NAME)
        start = pd.Timestamp(str(BOND_START_YEAR) + '-01-02 00:00:00', tz=None)
        end = pd.Timestamp(str(BOND_END_YEAR) + '-01-03 00:00:00', tz=None)
        ror_percent = functions.calc_return(df_t, start, end, return_type='percent', annualize=True)
        self.assertGreaterEqual(ror_percent, 0)
        self.assertLessEqual(ror_percent, 100)
コード例 #10
0
    def test_exccalc_return_type(self):
        """check if exception raised when return type is neither
        log or percent.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if no exception raised with an unexpected
            return type.

        Raises:
            Raises AssertionError Values not equal
        """
        data_input = functions.invest_dataframe(FILE_NAME)
        start = TEST_START
        end = TEST_END
        with self.assertRaises(Exception):
            functions.calc_return(data_input, start, end, return_type='null')
コード例 #11
0
    def test_file_name(self):
        """check if the index of output dataframe has the
        same name as the input file.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if unexpected column name encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        df_to_test = functions.invest_dataframe(FILE_NAME)
        out_file_name = list(df_to_test)[0]
        char_one = "/"
        char_two = "."
        break1 = [pos for pos, char in enumerate(FILE_NAME) if char == char_one]
        break2 = [pos for pos, char in enumerate(FILE_NAME) if char == char_two]
        in_file_name = FILE_NAME[break1[-1] + 1:break2[-1]]
        self.assertEqual(in_file_name, out_file_name)
コード例 #12
0
    def test_return_list_num_rows(self):
        """check if number of rows returned by the return_list
        function is less than or equal to the number of days
        being considered in the calculation.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if unexpected num_rows encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        data_input = functions.invest_dataframe(FILE_NAME)
        start = TEST_START
        end = TEST_END
        out_return = functions.return_list(data_input, start, end)
        num_days_str = str(end - start)
        num_days = int(num_days_str[:num_days_str.find(" ")])
        self.assertLessEqual(out_return.shape[0], num_days)
コード例 #13
0
    def test_num_rows_with_data(self):
        """Check that the number of rows in the dataframe
        returned is greater than the number of rows in the
        input data file.

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay
            else raises an error if unexpected number of
            rows encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        len_file = 0
        with open(FILE_NAME) as file_open:
            for _ in enumerate(file_open):
                len_file += 1
        df_to_test = functions.invest_dataframe(FILE_NAME)
        rows_output = df_to_test.index.shape[0]
        self.assertGreater(rows_output, len_file)
コード例 #14
0
    def test_probcalc_risk_return_type(self):
        """check if calc_risk function returns an output
        of type numpy.float64 when risk type = proba

        Args:
            No special arguments as it is a unittest.

        Returns:
            No return values. Passes the test if all okay else
            raises an error if unexpected return type encountered.

        Raises:
            Raises AssertionError Values not equal
        """
        data_input = functions.invest_dataframe(FILE_NAME)
        start = TEST_START
        end = TEST_END
        out_return = functions.calc_risk(data_input, start, end, risk_type='proba')
        out_type = str(type(out_return))
        if out_type == "<class 'numpy.float64'>" or out_type == "<type 'numpy.float64'>":
            out_bool = 1
        else:
            out_bool = 1
        self.assertEqual(out_bool, 1)
コード例 #15
0
"""
This file contains the functions which take the user inputs
from the frontend, send them to the backend to interact with
the data, then returns the information to the frontend for graphing.
"""
from backend.functions import invest_dataframe, track_portfolio_cache, label_risk_return

# Dictionary translating descriptions of investment classes to data sets
# Expand as necessary in the future.
INVESTMENT_CLASS_DICT = {
    'U.S. large-cap stocks (S&P 500 index)':
    invest_dataframe('./Data/SP500.csv'),
    'U.S. large-cap stocks (Wilshire index)':
    invest_dataframe('./Data/WILLLRGCAP.csv'),
    'U.S. mid-cap stocks (Wilshire index)':
    invest_dataframe('./Data/WILLMIDCAP.csv'),
    'U.S. small-cap stocks (Wilshire index)':
    invest_dataframe('./Data/WILLSMLCAP.csv'),
    'U.S. corporate bonds (investment-grade, AAA rated)':
    invest_dataframe('./Data/BAMLCC0A1AAATRIV.csv'),
    'U.S. corporate bonds (investment-grade, BBB rated)':
    invest_dataframe('./Data/BAMLCC0A4BBBTRIV.csv'),
    'U.S. Treasury bonds, total market (S&P index)':
    invest_dataframe('./Data/SPUSBOND.csv'),
    'U.S. Treasury bonds, 0-1 year (S&P index)':
    invest_dataframe('./Data/SP01BOND.csv'),
    'U.S. Treasury bonds, 1-3 year (S&P index)':
    invest_dataframe('./Data/SP13BOND.csv'),
    'U.S. Treasury bonds, 3-5 year (S&P index)':
    invest_dataframe('./Data/SP35BOND.csv'),
    'U.S. Treasury bonds, 5-7 year (S&P index)':