def batch_l2_grad(self): with backpack(new_ext.BatchL2Grad()): _, _, loss = self.problem.forward_pass() loss.backward() batch_l2_grad = [ p.batch_l2 for p in self.problem.model.parameters() ] return batch_l2_grad
lossfunc = CrossEntropyLoss() model = extend(model) lossfunc = extend(lossfunc) # %% # We can now evaluate the loss and do a backward pass with Backpack # ----------------------------------------------------------------- loss = lossfunc(model(X), y) with backpack( extensions.BatchGrad(), extensions.Variance(), extensions.SumGradSquared(), extensions.BatchL2Grad(), extensions.DiagGGNMC(mc_samples=1), extensions.DiagGGNExact(), extensions.DiagHessian(), extensions.KFAC(mc_samples=1), extensions.KFLR(), extensions.KFRA(), ): loss.backward() # %% # And here are the results # ----------------------------------------------------------------- for name, param in model.named_parameters(): print(name)
from torch.nn import CrossEntropyLoss, Flatten, Linear, Sequential from backpack import backpack, extend, extensions from backpack.utils.examples import load_mnist_data B = 4 X, y = load_mnist_data(B) print( "# Gradient with PyTorch, individual gradients' L2 norms with BackPACK | B =", B) model = Sequential( Flatten(), Linear(784, 10), ) lossfunc = CrossEntropyLoss() model = extend(model) lossfunc = extend(lossfunc) loss = lossfunc(model(X), y) with backpack(extensions.BatchL2Grad()): loss.backward() for name, param in model.named_parameters(): print(name) print(".grad.shape: ", param.grad.shape) print(".batch_l2.shape: ", param.batch_l2.shape)
def batch_l2(self): with backpack(new_ext.BatchL2Grad()): self.loss().backward() batch_l2s = [p.batch_l2 for p in self.model.parameters()] return batch_l2s
def batch_l2_grad(self) -> List[Tensor]: # noqa:D102 with backpack(new_ext.BatchL2Grad()): _, _, loss = self.problem.forward_pass() loss.backward() return self.problem.collect_data("batch_l2")