コード例 #1
0
def test_distribute_random_effect_over(diabetes_data):
    # Random slopes
    model = Model(diabetes_data)
    model.add(random='C(age_grp)|BMI')
    assert model.terms['C(age_grp)[T.1]|BMI'].data.shape == (442, 163)
    # Nested or crossed random intercepts
    model.reset()
    model.add(random='0+C(age_grp)|BMI')
    assert model.terms['C(age_grp)[0]|BMI'].data.shape == (442, 163)
コード例 #2
0
def test_distribute_random_effect_over(diabetes_data):
    # Random slopes
    model = Model(diabetes_data)
    model.add_term('age_grp', over='BMI', categorical=False, random=True)
    assert model.terms['age_grp|BMI'].data.shape == (442, 163)
    # Nested or crossed random intercepts
    model.reset()
    model.add_term('age_grp', over='BMI', categorical=True, random=True,
                   drop_first=False)
    t = model.terms['age_grp|BMI'].data
    assert isinstance(t, dict)
    assert t['age_grp[0]'].shape == (442, 83)
コード例 #3
0
def test_distribute_random_effect_over(diabetes_data):
    # Random slopes
    model = Model(diabetes_data)
    model.add("BP ~ 1")
    model.add(random="C(age_grp)|BMI")
    model.build(backend="pymc")
    assert model.terms["C(age_grp)[T.1]|BMI"].data.shape == (442, 163)
    # Nested or crossed random intercepts
    model.reset()
    model.add("BP ~ 1")
    model.add(random="0+C(age_grp)|BMI")
    model.build(backend="pymc")
    assert model.terms["C(age_grp)[0]|BMI"].data.shape == (442, 163)
コード例 #4
0
def test_distribute_group_specific_effect_over(diabetes_data):
    # 163 unique levels of BMI in diabetes_data
    # With intercept
    model = Model(diabetes_data)
    model.fit("BP ~ (C(age_grp)|BMI)", run=False)
    # Since intercept is present, it uses treatment encoding
    lvls = sorted(list(diabetes_data["age_grp"].unique()))[1:]
    for lvl in lvls:
        assert model.terms[f"C(age_grp)[{lvl}]|BMI"].data.shape == (442, 163)
    assert "1|BMI" in model.terms

    # Without intercept
    model.reset()
    model.fit("BP ~ (0 + C(age_grp)|BMI)", run=False)
    assert model.terms["C(age_grp)[0]|BMI"].data.shape == (442, 163)
    assert model.terms["C(age_grp)[1]|BMI"].data.shape == (442, 163)
    assert model.terms["C(age_grp)[2]|BMI"].data.shape == (442, 163)
    assert not "1|BMI" in model.terms