コード例 #1
0
    def create_from_list_or_dict(cls, dataset, calculations):
        calculations = to_list(calculations)

        if not len(calculations) or not isinstance(calculations, list) or\
                any([not isinstance(e, dict) for e in calculations]):
            raise ArgumentError('Improper format for JSON calculations.')

        parsed_calculations = []

        # Pull out args to check JSON format
        try:
            for c in calculations:
                groups = c.get("groups")

                if not isinstance(groups, list):
                    groups = [groups]

                for group in groups:
                    parsed_calculations.append(
                        [c[cls.FORMULA], c[cls.NAME], group])
        except KeyError as e:
            raise ArgumentError('Required key %s not found in JSON' % e)

        # Save instead of create so that we calculate on all at once.
        calculations = [
            cls().save(dataset, formula, name, group)
            for formula, name, group in parsed_calculations
        ]
        call_async(calculate_task, calculations, dataset.clear_cache())
コード例 #2
0
    def __parse_select(self, select, required=False):
        if required and select is None:
            raise ArgumentError('no select')

        if select == self.SELECT_ALL_FOR_SUMMARY:
            select = None
        elif select is not None:
            select = safe_json_loads(select, error_title='select')

            if not isinstance(select, dict):
                msg = 'select argument must be a JSON dictionary, found: %s.'
                raise ArgumentError(msg % select)

        return select
コード例 #3
0
    def delete(self, dataset):
        """Delete this calculation.

        First ensure that there are no other calculations which depend on this
        one. If not, start a background task to delete the calculation.

        :param dataset: Dataset for this calculation.

        :raises: `DependencyError` if dependent calculations exist.
        :raises: `ArgumentError` if group is not in DataSet or calculation does
            not exist for DataSet.
        """
        if len(self.dependent_calculations):
            msg = 'Cannot delete, calculations %s depend on this calculation.'
            raise DependencyError(msg % self.dependent_calculations)

        if not self.group is None:
            # it is an aggregate calculation
            dataset = dataset.aggregated_dataset(self.group)

            if not dataset:
                msg = 'Aggregation with group "%s" does not exist for dataset.'
                raise ArgumentError(msg % self.group)

        call_async(delete_task, self, dataset)
コード例 #4
0
        def action(dataset):
            if json_file:
                calculations = safe_json_loads(json_file.file.read())
                Calculation.create_from_list_or_dict(dataset, calculations)
                success_message = 'created calculations from JSON'
            elif formula is None or name is None:
                raise ArgumentError('Must provide both formula and name argume'
                                    'nts, or json_file argument')
            else:
                Calculation.create(dataset, formula, name, group)

            return self._success('created calculation: %s' % name, dataset_id)
コード例 #5
0
    def delete_columns(self, columns):
        """Delete column `column` from this dataset.

        :param column: The column to delete.
        """
        columns = set(self.schema.keys()).intersection(set(to_list(columns)))

        if not len(columns):
            raise ArgumentError("Columns: %s not in dataset.")

        Observation.delete_columns(self, columns)
        new_schema = self.schema

        [new_schema.pop(c) for c in columns]

        self.set_schema(new_schema, set_num_columns=True)

        return columns
コード例 #6
0
        def action(dataset, query=query, select=select, limit=limit):
            if not dataset.is_ready:
                raise ArgumentError('dataset is not finished importing')

            limit = parse_int(limit, 0)
            query = self.__parse_query(query)
            select = self.__parse_select(select, required=True)

            groups = dataset.split_groups(group)
            [valid_column(dataset, c) for c in groups]

            # if select append groups to select
            if select:
                select.update(dict(zip(groups, [1] * len(groups))))

            query_args = QueryArgs(query=query, select=select, limit=limit,
                                   order_by=order_by)
            dframe = dataset.dframe(query_args)

            return dataset.summarize(dframe, groups=groups,
                                     no_cache=query or select, flat=flat)
コード例 #7
0
        def action(dataset, select=select):
            query_args = self.__parse_query_args(limit, order_by, query,
                                                 select, dataset=dataset)

            numerics_select = dataset.schema.numerics_select
            query_select = query_args.select

            if query_select is None:
                query_select = numerics_select
            else:
                query_select = {k: v for k, v in query_select.items() if k in
                                numerics_select.keys()}

            if not query_select:
                raise ArgumentError(
                    'No numeric columns for dataset, or no select columns are '
                    'numeric. Select: %s.' % select)

            if index:
                query_select[index] = 1
                valid_column(dataset, index)

            if group:
                query_select[group] = 1
                valid_column(dataset, group)

            query_args.select = query_select

            dframe = dataset.dframe(query_args=query_args).dropna()
            axis = None

            if group or index:
                agg = self.__parse_aggregation(aggregation)

            if index:
                if group:
                    groupby = dframe.groupby(group)
                    dframes = []

                    for g in groupby.groups.keys():
                        renamed = {c: '%s %s' % (c, g) for c in dframe.columns}
                        data = groupby.get_group(g).groupby(index).agg(agg)
                        dframes.append(data.rename(columns=renamed))

                    dframe = concat(dframes).fillna(0).reset_index().groupby(
                        index).agg(agg).sort_index()
                else:
                    dframe = dframe.groupby(index).agg(agg)
            elif group:
                dframe = dframe.groupby(group).agg(agg).reset_index()
                axis = dframe[group].tolist()
                dframe = dframe.drop(group, axis=1)

            if vega:
                dframe.index = axis or dframe.index.map(float)
                vis = vincent.Bar()
                vis.tabular_data(dframe, columns=dframe.columns.tolist()[0:1])

                return vis.vega
            else:
                vis = bearcart.Chart(dframe, plt_type=plot_type, width=width,
                                     height=height, palette=palette,
                                     x_axis=axis or True,
                                     x_time=index is not None)

            return vis.build_html()
コード例 #8
0
def valid_column(dataset, c):
    if c not in dataset.columns:
        raise ArgumentError("'%s' is not a column for this dataset." % c)