コード例 #1
0
def binary_mse_multinomial(repeats, niterations, f_range, beta, nstates=2):
    """
    Function to compute the mean-squared error of the SAMS binary update scheme when drawing samples from
    the multinomial distribution. Over many repeats, target free energies will be drawn randomly and uniformly
    from a specified range and SAMS will adapt to those free energies.

    Parameters
    ----------
    repeats: int
        The number of repeats with which to draw target free energies and run SAMS
    ninterations:
        The number of state samples generated and SAMS adaptive steps
    f_range: float
        The interval over which target free energies will be drawn
    beta: float
        The exponent for the SAMS burn-in stage
    nstates: int
        The number of states and target free energies.
    """
    binary_aggregate_msd = np.zeros((repeats, niterations))
    for r in range(repeats):
        f_true = np.random.uniform(low=-f_range / 2.0, high=f_range / 2.0, size=nstates)
        f_true -= f_true[0]

        generator = IndependentMultinomialSamper(free_energies=f_true)
        adaptor = SAMSAdaptor(nstates=nstates, beta=beta)

        for i in range(niterations):
            noisy = generator.step()
            state = np.where(noisy != 0)[0][0]
            z = -adaptor.update(state=state, noisy_observation=noisy, histogram=generator.histogram)
            generator.zetas = z
            binary_aggregate_msd[r, i] = np.mean((f_true - z) ** 2)
    return binary_aggregate_msd
コード例 #2
0
    def test_slow_gain(self):
        """
        Ensure the correct gain factor is correctly calculated in the absence of two stage procedure.
        """
        # The system and SAMS parameters
        nstates = 10  # The number of discrete states in the system
        target_weights = np.repeat(1.0 / nstates,
                                   nstates)  # The target probabilities
        initial_zeta = np.repeat(
            1.0, nstates)  # Initial estimate for the free energies
        initial_zeta -= initial_zeta[0]

        adaptor = SAMSAdaptor(nstates=nstates,
                              two_stage=False,
                              zetas=initial_zeta,
                              target_weights=target_weights)

        # Generate a fake sample for the noisy variable:
        noisy = np.zeros(nstates)
        state = 3  # The imagined state of the sampler
        noisy[state] = 1.0

        new_zetas = adaptor.update(state=state, noisy_observation=noisy)
        true_new_zeta = initial_zeta[state] + (
            noisy[state] / target_weights[state]) / adaptor.time

        assert new_zetas[state] == true_new_zeta
コード例 #3
0
def rb_mse_gaussian(sigmas, niterations, nmoves=1, save_freq=1, beta=0.6, flat_hist=0.2):
    """
    Function to compute the mean-squared error from the Rao-Blackwellized update scheme in when sampling
    states with GaussianMixtureSampler.

    Parameters
    ----------
    sigmas: numpy array
        The standard deviations of the Gaussians that are centered on zero
    niterations: int
        The number of iterations of mixture sampling and SAMS updates that will be performed
    nmoves: int
        The number of moves from the Gaussian Gibbs sampler. One position step and state step
        constitute one move.
    save_freq: int
        The frequency with which to save the state in the Gaussian mixture sampler, used to decorrelate trajectory
    beta: float
        The exponent in the burn-in phase of the two stage SAMS update scheme.
    flat_hist: float
        The average fractional difference between the target weights of the mixture and count frequency

    Returns
    -------
    mse: numpy array
        the mean-squared error of the SAMS estimate for each iteration
    """
    generator = GaussianMixtureSampler(sigmas=sigmas)
    nstates = len(sigmas)
    adaptor = SAMSAdaptor(nstates=nstates, beta=beta, flat_hist=flat_hist)

    # The target free energy
    f_true = -np.log(sigmas)
    f_true = f_true - f_true[0]

    mse = np.zeros((niterations))
    for i in range(niterations):
        generator.step(nmoves, save_freq)
        state = generator.state
        noisy = generator.weights
        z = -adaptor.update(state=state, noisy_observation=noisy, histogram=generator.histogram)
        generator.zetas = z
        mse[i] = np.mean((f_true[1:] - z[1:]) ** 2)
    return mse
コード例 #4
0
    def test_sams_clock(self):
        """
        Assess that the adaptor accurately logs the number of times it was called and its iteration stage. The SAMS
        internal clock is used to calculate the gain. Samples will be generated with numpy's multinomial sampler.
        """
        # Initialize the SAMS adaptor
        nstates = 10
        adaptor = SAMSAdaptor(nstates=nstates)

        # The probabilities for the discrete states
        probs = np.repeat(1.0 / nstates, nstates)

        # Iterating the sampler and adaptor for few steps
        niterations = 10
        for i in range(niterations):
            noisy = np.random.multinomial(1, probs)
            state = np.where(noisy != 0)[0][0]
            adaptor.update(state=state, noisy_observation=noisy)

        assert adaptor.time == niterations
コード例 #5
0
    def test_burnin_termination(self):
        """
        Tests whether the stopping criterion for the burn-in period is correctly implemented.
        """
        nstates = 10
        target_weights = np.repeat(1.0 / nstates, nstates)
        adaptor = SAMSAdaptor(nstates=nstates,
                              two_stage=True,
                              flat_hist=0.2,
                              target_weights=target_weights)

        # Creating a histogram that matches the target weights. The burn-in should stop.
        histogram = 100 * target_weights

        noisy = np.zeros(nstates)
        state = 3  # The imagined state of the sampler
        noisy[state] = 1.0

        adaptor.update(state=state,
                       noisy_observation=noisy,
                       histogram=histogram)

        assert adaptor.burnin == False
コード例 #6
0
    def test_burnin_continuation(self):
        """
        Tests whether the burn-in does not stop prematurely
        """
        nstates = 10
        target_weights = np.repeat(1.0 / nstates, nstates)
        adaptor = SAMSAdaptor(nstates=nstates,
                              two_stage=True,
                              flat_hist=0.2,
                              target_weights=target_weights)

        # Creating a histogram that is far from 'flat' and therefore should not stop the burn-in phase
        histogram = np.arange(nstates)

        # Creating a fake sample
        noisy = np.zeros(nstates)
        state = 3  # The imagined state of the sampler
        noisy[state] = 1.0

        adaptor.update(state=state,
                       noisy_observation=noisy,
                       histogram=histogram)

        assert adaptor.burnin == True
コード例 #7
0
    def test_fast_gain(self):
        """
        Ensures the gain during the burn-in stage is properly calculated.
        """
        # The system and SAMS parameters
        nstates = 10  # The number of discrete states in the system
        beta = 0.7  # Exponent of gain factor during burn-in phase.
        target_weights = np.repeat(1.0 / nstates,
                                   nstates)  # The target probabilities
        initial_zeta = np.repeat(
            1.0, nstates)  # Initial estimate for the free energies
        initial_zeta -= initial_zeta[0]

        adaptor = SAMSAdaptor(nstates=nstates,
                              two_stage=True,
                              zetas=initial_zeta,
                              target_weights=target_weights,
                              beta=beta)

        # Generate a fake sample for the noisy variable:
        noisy = np.zeros(nstates)
        state = 3  # The imagined state of the sampler
        noisy[state] = 1.0

        new_zetas = adaptor.update(state=state,
                                   noisy_observation=noisy,
                                   histogram=np.arange(nstates))

        if target_weights[state] < adaptor.time**(-beta):
            true_new_zeta = initial_zeta[state] + target_weights[state] * (
                noisy[state] / target_weights[state])
        else:
            true_new_zeta = initial_zeta[state] + adaptor.time**(-beta) * (
                noisy[state] / target_weights[state])

        assert new_zetas[state] == true_new_zeta
コード例 #8
0
        app.PDBFile.writeModel(wbox.topology,
                               positions,
                               file=pdbfile,
                               modelIndex=0)
        pdbfile.close()

        # Create a DCD file system configurations
        dcdfile = open(args.out + '.dcd', 'wb')
        dcd = app.DCDFile(file=dcdfile, topology=wbox.topology, dt=timestep)

    # Initialize SAMS adaptor
    initial_guess = 317.0
    # Initializing the  bias using the free energy to insert a single salt molecule
    bias = np.arange(args.saltmax + 1) * initial_guess
    adaptor = SAMSAdaptor(nstates=args.saltmax + 1,
                          zetas=bias,
                          beta=0.6,
                          flat_hist=0.1)
    state_counts = np.zeros(args.saltmax + 1)

    # Proposal mechanism for SAMS
    def gen_penalty(nsalt, bias, saltmax):
        if nsalt == saltmax:
            penalty = [0.0, bias[nsalt - 1] - bias[nsalt]]
        elif nsalt == 0:
            penalty = [bias[nsalt + 1] - bias[nsalt], 0.0]
        else:
            penalty = [
                bias[nsalt + 1] - bias[nsalt], bias[nsalt - 1] - bias[nsalt]
            ]
        return penalty