def build_proxy(self, *, source, trained): self.data[("value_predicted", "classes")] = ProxyContainer( lambda : trained.data[("value_statistics", "classes")], Header, ) self.data[("value_predicted", "probability")] = ProxyContainer( lambda: trained.data[("value_statistics", "probability")].reshape(1,-1) * np.ones(source.data["representation"].shape[0], dtype=np.float).reshape(-1,1), Table, )
def build_proxy(self, *, source, trained): rfc = trained.rfc.fit( trained.source.data["representation"], trained.source.data["value"], ) self.data[("value_predicted", "classes")] = ProxyContainer( lambda: rfc.classes_, Header, ) self.data[("value_predicted", "probability")] = ProxyContainer( lambda: rfc.predict_proba(source.data["representation"]), Table, )
def build_proxy(self, *, source, trained): self.data["value_predicted"] = ProxyContainer( lambda : np.sum( source.data["representation"] * trained.data["w"], axis=1, ) + trained.data["b"], Table, )
def build_proxy(self, *, source, trained): etr = trained.etr.fit( trained.source.data["representation"], trained.source.data["value"], ) self.data["value_predicted"] = ProxyContainer( lambda: etr.predict(source.data["representation"]), Table, )
def build_proxy(self, *, source, trained): self.data["value_predicted"] = ProxyContainer( lambda : np.array( [np.mean(trained.data["value_original"][_idx]) \ for _idx in np.argsort( -source.data["representation"], axis=1, )[:,:trained.data["k"]]] ), Table, )
def build_proxy(self, *, source, trained): self.data[("value_predicted", "classes")] = ProxyContainer( lambda: np.array([0, 1], dtype=np.int), Header, ) def f(): x = source.data["representation"] w = trained.data["w"] b = trained.data["b"] # predict value == 1 result = np.zeros((x.shape[0], 2), dtype=np.float) result[:, 1] = expit(np.sum(x * w, axis=1) + b) result[:, 0] = 1 - result[:, 1] return result self.data[("value_predicted", "probability")] = ProxyContainer( f, Table, )
def build_proxy(self, *, source, trained): self.data[("value_predicted", "classes")] = ProxyContainer( lambda: np.unique(trained.data["value_original"]), Header, ) def f(): k = trained.data["k"] idx = np.argsort(-source.data["representation"], axis=1)[:, :k] classes = np.unique(trained.data["value_original"]) result = np.zeros((len(idx), len(classes)), dtype=np.float) for i, _idx in enumerate(idx): for j, c in enumerate(classes): result[i, j] = (trained.data["value_original"][_idx] == c).sum() / k result[:, -1] = 1 - result[:, :-1].sum(axis=1) return result self.data[("value_predicted", "probability")] = ProxyContainer( f, Table, )
def build_proxy(self, *, source, trained): self.data["value_predicted"] = ProxyContainer( lambda: trained.data["value_constant"] * np.ones( source.data["representation"].shape[0], dtype=np.float32), Table, )