def test_header_cal_type_flat(mock_instrument_info, mock_namer): mock_namer.return_value = lambda *x: 'foo.fits' mock_instrument_info.return_value = None, None, None fake_context = FakeContext() fake_context.db_address = '' maker = FlatMaker(fake_context) master_flat = maker.do_stage([FakeFlatImage() for x in range(6)])[0] header = master_flat.header assert header['OBSTYPE'].upper() == 'SKYFLAT'
def test_bias_level_is_average_of_inputs(mock_instrument_info): nimages = 20 bias_levels = np.arange(nimages, dtype=float) images = [FakeBiasImage(bias_level=i) for i in bias_levels] mock_instrument_info.return_value = None, None, None fake_context = FakeContext() fake_context.db_address = '' maker = BiasMaker(fake_context) master_bias = maker.do_stage(images)[0] header = master_bias.header assert header['BIASLVL'] == np.mean(bias_levels)
def test_bias_level_is_average_of_inputs(mock_instrument_info, mock_namer): mock_namer.return_value = lambda *x: 'foo.fits' nimages = 20 bias_levels = np.arange(nimages, dtype=float) images = [FakeBiasImage(bias_level=i) for i in bias_levels] mock_instrument_info.return_value = None, None, None fake_context = FakeContext() fake_context.db_address = '' maker = BiasMaker(fake_context) master_bias = maker.do_stage(images)[0] header = master_bias.header assert header['BIASLVL'] == np.mean(bias_levels)