コード例 #1
0
    def merge_checkpoint_benchmark_results(checkpoint_dir):
        checkpoint_files = glob.glob(os.path.join(checkpoint_dir,
                                                  "**/*.ckpnt"),
                                     recursive=True)
        merged_result = BenchmarkResult()
        # merge all checkpoints with new results
        for checkpoint_file in checkpoint_files:
            logging.info("Loading checkpoint {}".format(
                os.path.abspath(checkpoint_file)))
            next_result = BenchmarkResult.load(os.path.abspath(checkpoint_file), \
                load_configs=True, load_histories=True)
            merged_result.extend(next_result)
        # dump merged result
        if len(merged_result.get_result_dict()) > 0:
            logging.info("Dumping merged result")
            merged_result_filename = os.path.join(checkpoint_dir,
                                                  "merged_results.ckpnt")
            merged_result.dump(merged_result_filename, \
                dump_configs=True, dump_histories=True)

        # delete checkpoints
        for checkpoint_file in checkpoint_files:
            if checkpoint_file == merged_result_filename:
                continue
            os.remove(checkpoint_file)
            logging.info(
                "Removed old checkpoint file {}".format(checkpoint_file))
        return merged_result
コード例 #2
0
    def test_extend_from_file(self):
        try:
          os.remove("./br1")
          os.remove("./br2")
          os.remove("./br3")
        except:
          pass
        result_num = 100
        confs, result_data, histories1 = random_benchmark_conf_data(result_num, 2000000, hist_size=1500000, offset=0)
        br1 = BenchmarkResult(result_dict=result_data,
          benchmark_configs=confs, histories=histories1)
        br1.dump("./br1", dump_histories=True, dump_configs=True)
        br1_df = br1.get_data_frame().copy()

        result_num = 30
        confs2, result_data2, histories2 = random_benchmark_conf_data(result_num, 2000000, hist_size=1500000, offset=200)
        br2 = BenchmarkResult(result_dict=result_data2,
          benchmark_configs=confs2, histories=histories2)
        br2.dump(filename="./br2", dump_histories=True, dump_configs=True)

        result_num = 10
        confs3, result_data3, histories3 = random_benchmark_conf_data(result_num, 2000000, hist_size=1500000, offset=400)
        br3 = BenchmarkResult(result_dict=result_data3,
          benchmark_configs=confs3, histories=histories3)
        br3.dump(filename="./br3", dump_histories=True, dump_configs=True)

        br1.extend(benchmark_result=br2, file_level=True)
        br1.extend(benchmark_result=br3, file_level=True)

        br_loaded = BenchmarkResult.load("./br1", load_histories=True, load_configs=True)
        df_desired = br1_df
        df_desired = pd.concat([df_desired, br2.get_data_frame()])
        df_desired = pd.concat([df_desired, br3.get_data_frame()])
        self.assertEqual(len(br_loaded.get_data_frame().index), len(df_desired.index))

        extended_confs = br_loaded.get_benchmark_configs()
        self.assertEqual(len(extended_confs), 140)
        extended_histories = br_loaded.get_histories()
        self.assertEqual(len(extended_histories), 140)
        extended_histories = histories1
        extended_histories.update(histories2)
        extended_histories.update(histories3)
        for bc in extended_confs:
            self.assertEqual(br_loaded.get_history(bc.config_idx), extended_histories[bc.config_idx])
コード例 #3
0
    def merge_checkpoint_benchmark_results(checkpoint_dir):
        checkpoint_files = glob.glob(os.path.join(checkpoint_dir, "**/*.ckpnt"), recursive=True)
        merged_result_filename = BenchmarkRunner.get_merged_result_filename(checkpoint_dir)
        if os.path.exists(merged_result_filename):
          merged_result = BenchmarkResult.load_results(filename=merged_result_filename)
        else:
          merged_result = BenchmarkResult(file_name=merged_result_filename)
        # merge all checkpoints with new results
        for checkpoint_file in checkpoint_files:
          loaded_result = BenchmarkResult.load(os.path.abspath(checkpoint_file))
          merged_result.extend(loaded_result, file_level=True)
          logging.info("Extending with checkpoint {}".format(checkpoint_file))

        # delete checkpoints
        for checkpoint_file in checkpoint_files:
          if "merged_result" in checkpoint_file:
            continue
          os.remove(checkpoint_file)
          logging.info("Removed old checkpoint file {}".format(checkpoint_file))
        return merged_result
コード例 #4
0
    def run(self, viewer=None, maintain_history=False, checkpoint_every=None):
        last_results = []
        last_histories = {}
        last_run_configs = []
        results = []
        checkpoint_file = os.path.abspath(os.path.join(self.checkpoint_dir, self.get_checkpoint_file_name()))
        last_result_file = os.path.abspath(os.path.join(self.checkpoint_dir, "tmp_{}".format(self.get_checkpoint_file_name())))
        checkpoint_result = BenchmarkResult(file_name=checkpoint_file)
        for idx, bmark_conf in enumerate(self.configs_to_run):
            self.logger.info("Running config idx {} being {}/{}: Scenario {} of set \"{}\" for behavior \"{}\"".format(
                bmark_conf.config_idx, idx, len(self.benchmark_configs) - 1, bmark_conf.scenario_idx,
                bmark_conf.scenario_set_name, bmark_conf.behavior_config.behavior_name))
            bmark_conf = copy.deepcopy(bmark_conf) if self._deepcopy else bmark_conf
            result_dict, scenario_history = self._run_benchmark_config(bmark_conf, viewer,
                                                                       maintain_history)
            results.append(result_dict)
            last_results.append(result_dict)
            last_histories[bmark_conf.config_idx] = scenario_history
            last_run_configs.append(bmark_conf)
            if self.log_eval_avg_every and (idx + 1) % self.log_eval_avg_every == 0:
                self._log_eval_average(results, self.configs_to_run)

            if checkpoint_every and (idx+1) % checkpoint_every == 0:
                # append results since last checkpoint
                last_benchmark_result = BenchmarkResult(result_dict=last_results, file_name = last_result_file, \
                         benchmark_configs=last_run_configs, histories=last_histories)
                last_benchmark_result.dump(last_result_file, dump_configs=True, dump_histories=maintain_history, append=False)
                checkpoint_result.extend(benchmark_result=last_benchmark_result, file_level=True)
                self.logger.info("Extended checkpoint {} with last result.".format(checkpoint_file))
                last_histories.clear()
                last_run_configs.clear()
                last_results.clear()
        # append results of last run
        last_benchmark_result = BenchmarkResult(result_dict=last_results, file_name = last_result_file, \
                         benchmark_configs=last_run_configs, histories=last_histories)
        last_benchmark_result.dump(last_result_file, dump_configs=True, dump_histories=maintain_history, append=False)
        checkpoint_result.extend(benchmark_result=last_benchmark_result, file_level=True)
        os.remove(last_result_file)
        self.logger.info("Extended checkpoint {} with final result.".format(checkpoint_file))
        checkpoint_result.extend(benchmark_result=self.existing_benchmark_result, file_level=True)
        return checkpoint_result
コード例 #5
0
class BenchmarkRunner:
    def __init__(self,
                 benchmark_database=None,
                 evaluators=None,
                 terminal_when=None,
                 behaviors=None,
                 behavior_configs=None,
                 num_scenarios=None,
                 benchmark_configs=None,
                 logger_name=None,
                 log_eval_avg_every=None,
                 checkpoint_dir=None,
                 merge_existing=False,
                 deepcopy=True):

        self.benchmark_database = benchmark_database
        self.evaluators = evaluators or {}
        self.terminal_when = terminal_when or []
        if behaviors:
            self.behavior_configs = BehaviorConfig.configs_from_dict(behaviors)
        else:
            self.behavior_configs = behavior_configs or {}
        self.benchmark_configs = benchmark_configs or \
                                 self._create_configurations(num_scenarios)

        self.logger = logging.getLogger(logger_name or "BenchmarkRunner")
        self.logger.setLevel(logging.DEBUG)
        self.logger.info("Total number of {} configs to run".format(
            len(self.benchmark_configs)))
        self.existing_benchmark_result = BenchmarkResult()
        self.configs_to_run = self.benchmark_configs
        self._deepcopy = deepcopy
        self.checkpoint_dir = checkpoint_dir or "checkpoints"
        if not os.path.exists(self.checkpoint_dir):
            os.makedirs(self.checkpoint_dir)

        if merge_existing:
            self.existing_benchmark_result = \
                BenchmarkRunner.merge_checkpoint_benchmark_results(checkpoint_dir)
            self.logger.info("Merged {} processed configs in folder {}". \
                format(len(self.existing_benchmark_result.get_benchmark_configs()), checkpoint_dir))
            self.configs_to_run = self.get_configs_to_run(self.benchmark_configs, \
                                                            self.existing_benchmark_result)
            self.logger.info("Remaining  number of {} configs to run".format(
                len(self.configs_to_run)))

        self.exceptions_caught = []
        self.log_eval_avg_every = log_eval_avg_every

    def get_checkpoint_file_name(self):
        return "benchmark_runner.ckpnt"

    def clear_checkpoint_dir(self):
        files = glob.glob(os.path.join(self.checkpoint_dir, "*.ckpnt"))
        for f in files:
            os.remove(f)

    @staticmethod
    def merge_checkpoint_benchmark_results(checkpoint_dir):
        checkpoint_files = glob.glob(os.path.join(checkpoint_dir,
                                                  "**/*.ckpnt"),
                                     recursive=True)
        merged_result = BenchmarkResult()
        # merge all checkpoints with new results
        for checkpoint_file in checkpoint_files:
            logging.info("Loading checkpoint {}".format(
                os.path.abspath(checkpoint_file)))
            next_result = BenchmarkResult.load(os.path.abspath(checkpoint_file), \
                load_configs=True, load_histories=True)
            merged_result.extend(next_result)
        # dump merged result
        if len(merged_result.get_result_dict()) > 0:
            logging.info("Dumping merged result")
            merged_result_filename = os.path.join(checkpoint_dir,
                                                  "merged_results.ckpnt")
            merged_result.dump(merged_result_filename, \
                dump_configs=True, dump_histories=True)

        # delete checkpoints
        for checkpoint_file in checkpoint_files:
            if checkpoint_file == merged_result_filename:
                continue
            os.remove(checkpoint_file)
            logging.info(
                "Removed old checkpoint file {}".format(checkpoint_file))
        return merged_result

    @staticmethod
    def get_configs_to_run(benchmark_configs, existing_benchmark_result):
        existing_inds = existing_benchmark_result.get_benchmark_config_indices(
        )
        required_inds = BenchmarkResult(benchmark_configs=benchmark_configs
                                        ).get_benchmark_config_indices()
        missing_inds = list(set(required_inds) - set(existing_inds))

        filtered_configs = filter(lambda bc: bc.config_idx in missing_inds,
                                  benchmark_configs)
        return list(filtered_configs)

    def _create_configurations(self, num_scenarios=None):
        benchmark_configs = []
        for behavior_config in self.behavior_configs:
            # run over all scenario generators from benchmark database
            for scenario_generator, scenario_set_name, scenario_set_param_desc in self.benchmark_database:
                for scenario, scenario_idx in scenario_generator:
                    if num_scenarios and scenario_idx >= num_scenarios:
                        break
                    benchmark_config = \
                        BenchmarkConfig(
                            len(benchmark_configs),
                            behavior_config,
                            scenario,
                            scenario_idx,
                            scenario_set_name,
                            scenario_set_param_desc
                        )
                    benchmark_configs.append(benchmark_config)
        return benchmark_configs

    def run(self, viewer=None, maintain_history=False, checkpoint_every=None):
        results = []
        histories = {}
        for idx, bmark_conf in enumerate(self.configs_to_run):
            self.logger.info(
                "Running config idx {} being {}/{}: Scenario {} of set \"{}\" for behavior \"{}\""
                .format(bmark_conf.config_idx, idx,
                        len(self.benchmark_configs) - 1,
                        bmark_conf.scenario_idx, bmark_conf.scenario_set_name,
                        bmark_conf.behavior_config.behavior_name))
            bmark_conf = copy.deepcopy(
                bmark_conf) if self._deepcopy else bmark_conf
            result_dict, scenario_history = self._run_benchmark_config(
                bmark_conf, viewer, maintain_history)
            results.append(result_dict)
            histories[bmark_conf.config_idx] = scenario_history
            if self.log_eval_avg_every and (idx +
                                            1) % self.log_eval_avg_every == 0:
                self._log_eval_average(results, self.configs_to_run)

            if checkpoint_every and (idx + 1) % checkpoint_every == 0:
                intermediate_result = BenchmarkResult(results, \
                         self.configs_to_run[0:idx+1], histories=histories)
                checkpoint_file = os.path.join(self.checkpoint_dir,
                                               self.get_checkpoint_file_name())
                intermediate_result.dump(checkpoint_file,
                                         dump_configs=True,
                                         dump_histories=maintain_history)
                self.logger.info("Saved checkpoint {}".format(checkpoint_file))
        benchmark_result = BenchmarkResult(results,
                                           self.configs_to_run,
                                           histories=histories)
        self.existing_benchmark_result.extend(benchmark_result)
        return self.existing_benchmark_result

    def run_benchmark_config(self, config_idx, **kwargs):
        for idx, bmark_conf in enumerate(self.benchmark_configs):
            if bmark_conf.config_idx == config_idx:
                bmark_conf = copy.deepcopy(
                    bmark_conf) if self._deepcopy else bmark_conf
                result_dict, scenario_history = self._run_benchmark_config(
                    bmark_conf, **kwargs)
                return BenchmarkResult(
                    result_dict, [bmark_conf],
                    histories={config_idx: scenario_history})
        self.logger.error(
            "Config idx {} not found in benchmark configs. Skipping...".format(
                config_idx))
        return

    def _run_benchmark_config(self,
                              benchmark_config,
                              viewer=None,
                              maintain_history=False):
        scenario = benchmark_config.scenario
        behavior = benchmark_config.behavior_config.behavior
        parameter_server = ParameterServer(json=scenario._json_params)
        scenario_history = []
        step = 0
        try:
            world = scenario.GetWorldState()
        except Exception as e:
            self.logger.error(
                "For config-idx {}, Exception thrown in scenario.GetWorldState: {}"
                .format(benchmark_config.config_idx, e))
            self._append_exception(benchmark_config, e)
            return {
                **benchmark_config.as_dict(), "step": step,
                "Terminal": "exception_raised"
            }

        # if behavior is not None (None specifies that also the default model can be evalauted)
        if behavior:
            world.agents[scenario._eval_agent_ids[0]].behavior_model = behavior
        if maintain_history:
            self._append_to_scenario_history(scenario_history, world, scenario)
        self._reset_evaluators(world, scenario._eval_agent_ids)
        step_time = parameter_server["Simulation"]["StepTime", "", 0.2]
        if not isinstance(step_time, float):
            step_time = 0.2
        terminal = False
        terminal_why = None
        while not terminal:
            try:
                evaluation_dict = self._get_evalution_dict(world)
            except Exception as e:
                self.logger.error(
                    "For config-idx {}, Exception thrown in evaluation: {}".
                    format(benchmark_config.config_idx, e))
                terminal_why = "exception_raised"
                self._append_exception(benchmark_config, e)
                evaluation_dict = {}
                break
            terminal, terminal_why = self._is_terminal(evaluation_dict)
            if not terminal:
                if viewer:
                    viewer.drawWorld(
                        world,
                        scenario._eval_agent_ids,
                        scenario_idx=benchmark_config.scenario_idx)
                    viewer.show(block=False)
                    time.sleep(step_time)
                    viewer.clear()
                try:
                    world.Step(step_time)
                except Exception as e:
                    self.logger.error(
                        "For config-idx {}, Exception thrown in world.Step: {}"
                        .format(benchmark_config.config_idx, e))
                    terminal_why = "exception_raised"
                    self._append_exception(benchmark_config, e)
                    break

                if maintain_history:
                    self._append_to_scenario_history(scenario_history, world,
                                                     scenario)
                step += 1

        dct = {
            **benchmark_config.as_dict(), "step": step,
            **evaluation_dict, "Terminal": terminal_why
        }

        return dct, scenario_history

    def _append_to_scenario_history(self, scenario_history, world, scenario):
        scenario = Scenario(agent_list=list(world.agents.values()),
                            map_file_name=scenario.map_file_name,
                            eval_agent_ids=scenario.eval_agent_ids,
                            json_params=scenario.json_params)
        scenario_history.append(scenario.copy())

    def _append_exception(self, benchmark_config, exception):
        self.exceptions_caught.append((benchmark_config.config_idx, exception))

    def _reset_evaluators(self, world, eval_agent_ids):
        for evaluator_name, evaluator_params in self.evaluators.items():
            evaluator_bark = None
            if isinstance(evaluator_params, str):
                try:
                    evaluator_bark = eval(
                        "{}(eval_agent_ids[0])".format(evaluator_params))
                except:
                    evaluator_bark = eval("{}()".format(evaluator_params))
            elif isinstance(evaluator_params, dict):
                evaluator_bark = eval(
                    "{}(agent_id=eval_agent_ids[0], **evaluator_params['params'])"
                    .format(evaluator_params["type"]))
            else:
                raise ValueError
            world.AddEvaluator(evaluator_name, evaluator_bark)

    def _evaluation_criteria(self):
        bark_evals = [eval_crit for eval_crit, _ in self.evaluators.items()]
        bark_evals.append("step")
        return bark_evals

    def _get_evalution_dict(self, world):
        return world.Evaluate()

    def _is_terminal(self, evaluation_dict):
        terminal = False
        terminal_why = []
        for evaluator_name, function in self.terminal_when.items():
            if function(evaluation_dict[evaluator_name]):
                terminal = True
                terminal_why.append(evaluator_name)
        return terminal, terminal_why

    def _log_eval_average(self, result_dct_list, configs):
        bresult = BenchmarkResult(result_dct_list, configs)
        df = bresult.get_data_frame()
        for eval_group in bresult.get_evaluation_groups():
            if eval_group not in df.columns:
                df[eval_group] = np.nan
        df.fillna(-1, inplace=True)
        grouped = df.apply(pd.to_numeric, errors='ignore').groupby(
            bresult.get_evaluation_groups()).mean()[
                self._evaluation_criteria()]
        self.logger.info(
            "\n------------------- Current Evaluation Results ---------------------- \n Num. Results:{}\n {} \n \
---------------------------------------------------------------------".format(
                len(result_dct_list), grouped.to_string()))