def test_perturb_cat(self): explore = PerturbExplore() rng = RNGStub() rng.randint = lambda low, high, size: [1] rng.choice = lambda choices: choices[0] dim = Categorical("name", ["one", "two", 3, 4.0]) assert explore.perturb_cat(rng, "whatever", dim) in dim
def test_perturb(self, space): explore = PerturbExplore() rng = RNGStub() rng.randint = lambda low, high, size: [1] rng.random = lambda: 1.0 rng.normal = lambda mean, variance: 0.0 rng.choice = lambda choices: choices[0] params = {"x": 1.0, "y": 2, "z": 0, "f": 10} new_params = explore(rng, space, params) for key in space.keys(): assert new_params[key] in space[key]
def test_resample_probability(self, space): explore = ResampleExplore(probability=0.5) rng = RNGStub() rng.randint = lambda low, high, size: [1] rng.random = lambda: 0.5 params = {"x": 1.0, "y": 2, "z": 0, "f": 10} assert explore(rng, space, params) is params rng.random = lambda: 0.4 assert explore(rng, space, params) is not params
def test_perturb_hierarchical_params(self, hspace): explore = PerturbExplore() rng = RNGStub() rng.randint = lambda low, high, size: [1] rng.random = lambda: 1.0 rng.normal = lambda mean, variance: 0.0 rng.choice = lambda choices: choices[0] params = {"numerical": {"x": 1.0, "y": 2, "f": 10}, "z": 0} new_params = explore(rng, hspace, params) assert "numerical" in new_params assert "x" in new_params["numerical"] for key in hspace.keys(): assert flatten(new_params)[key] in hspace[key]